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We propose a new interpolation technique for the CIP method applied to curvilinear coor-
dinates. The CIP method can hardly maintain third-order accuracy on curvilinear coordi-
nates. The reason for the degeneracy in accuracies has not been discussed in detail. This
paper reveals the problems of the CIP method on curvilinear coordinates and presents an
improved CIP method to solve the advection equation accurately. The features of the pre-
sented method are: (1) the metric computation on the upwind stencil is defined in the
same manner as in the advection phase of the CIP method; and (2) gradient values in
the physical domain in the computation on the curvilinear coordinates are used. Various
test problems show that the improved CIP method has approximate third-order accuracy.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The role of computational fluid dynamics (CFD) has been becoming more and more important in various engineering
fields. For example, in aerospace engineering, CFD techniques are indispensable to estimate aerodynamic characteristics
and investigate the flow field around vehicles. Numerical simulations are computed on curvilinear coordinates because
most aerospace vehicles have complicated geometries. The use of curvilinear coordinates is also necessary to capture
the boundary layer around a vehicle. There are numerous techniques to solve the flow equations. The CIP method is
one such method [1]. The characteristics of this method are to interpolate variables between the stencils using a cubic
function. In this method, the interpolation function is decided from the physical quantities and the gradient values of
the variables defined on the grid points. When we apply the CIP method to complicated mesh geometries, we take two
methods to denote the interpolation function on the mesh system. One is the extension to curvilinear coordinates by coor-
dinate transformation [2]. The other is to construct a mesh system adapted to the CIP method. A Soroban grid is a rea-
sonable mesh system for the CIP method [3]. However, the CIP method frequently encounters deterioration of accuracy
when the advection equations are solved on curvilinear coordinates. In spite of various applications, this problem has
not been resolved [2–5]. In the present paper, we propose a CIP method to solve the advection equations on curvilinear
coordinates with high accuracy. In Section 2, the problems of the CIP method on curvilinear coordinates are investigated
and an improved CIP method is proposed for computation on curvilinear coordinates. Section 3 discusses the extension of
a multi-dimensional method.
. All rights reserved.
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2. One-dimensional CIP method

2.1. Physical coordinates

The advection equation in conservative form can be written as
@f
@t
þ @ðuf Þ

@x
¼ 0 ð1Þ
Eq. (1) is rewritten by differential rules thus:
@f
@t
þ u

@f
@x
¼ H ð2Þ
Here,
H � �f
@u
@x
The CIP method defines the spline function that follows the advection equation. The cubic polynomial function used in the
CIP method is decided to satisfy the advection equations and the spatial differentiation of that equation. When the differen-
tiation of Eq. (2) is taken, we can obtain the following equation:
@fx

@t
þ u

@fx

@x
¼ Hx � ux

@f
@x

ð3Þ
In the CIP method, Eqs. (2) and (3) are split into two phases: the advection phase and the non-advection phase.
Advection phase
@f
@t
þ u

@f
@x
¼ 0 ð4Þ

@fx

@t
þ u

@fx

@x
¼ 0 ð5Þ
Non-advection phase
@f
@t
¼ �f

@u
@x

ð6Þ

@fx

@t
¼ Hx � ux

@f
@x

ð7Þ
The CIP method solves the advection equations so that the numerical profiles satisfy those equations and their gradient. The
profiles between grids are expressed by third-order polynomial as follows:
f ðxÞ ¼ ajx3 þ bjx2 þ fx;jxþ fj

fxðxÞ ¼ 3ajx2 þ 2bjxþ fx;j ð8Þ
x ¼ �uDt
The coefficients of the interpolation function can be decided from the continuous condition of the physical quantities and the
gradient of those values between grid cells.
f ðxjÞ ¼ fj

f ðxj þ Dxjþjsign=2Þ ¼ fjþjsign

fxðxjÞ ¼ fx;j

fxðxj þ Dxjþjsign=2Þ ¼ fx;jþjsign

Dxjþjsign=2 ¼ jsign � ðxjþjsign � xjÞ
jsign ¼ �1ðu P 0Þ; jsign ¼ 1ðu < 0Þ ð9Þ
The coefficients of the interpolation function are obtained from Eqs. (8) and (9) as follows:
aj ¼ jsign
2ðfj � fjþjsignÞ

Dx3
jþjsign=2

þ fx;jþjsign þ fx;j

Dx2
jþjsign=2

bj ¼
3ðfjþjsign � fjÞ

Dx2
jþjsign=2

þ jsign
fx;jþjsign þ 2f x;j

Dxjþjsign=2
ð10Þ
The profiles are moved along Eq. (8). This is called the CIP method. Eqs. (4) and (5) are solved using the CIP method. Then an
arbitrary method such as the finite difference method or finite element method is applied to Eqs. (6) and (7). We call this
method based on Eq. (8) the original CIP method in the present paper [1].
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2.2. Extension of the CIP method to the curvilinear coordinates

In one-dimensional problems, the CIP method is applied to a non-equally spaced grid. When we rewrite Eq. (1) to curvi-
linear coordinates using n ¼ nðxÞ, the advection equations on the curvilinear coordinates can be obtained as follows:
@f
@t
þ u nx �

@f
@n

� �
¼ H0

@f
@t
þ U

@f
@n
¼ H0 ð11Þ

H0 � � un

xn

� �
f

Here, U ¼ u=xn and nx ¼ 1=xn. The CIP function on the curvilinear coordinates is defined as in the previous section. When we
take the differentiation of Eq. (11) with respect to n,
@fn
@t
þ U

@fn
@n
¼ H0n � Un

@f
@n
: ð12Þ
Eqs. (11) and (12) are split into two phases on the advection and the non-advection phases.
Advection phase
@f
@t
þ U

@f
@n
¼ 0 ð13Þ

@fn
@t
þ U

@fn
@n
¼ 0 ð14Þ
Non-advection phase
@f
@t
¼ H0 ð15Þ

@fn
@t
¼ H0n � Un

@f
@n

ð16Þ
Eqs. (13) and (14) are solved using the CIP method. Eqs. (15) and (16) in the non-advection phase can be solved by some kind
of scheme. When we take the interpolation functions based on the CIP method in the previous section, we can obtain the
coefficients of those functions as follows:
FðnÞ ¼ Ajn
3 þ Bjn

2 þ fn;jnþ fj

FnðnÞ ¼ 3Ajn
2 þ 2Bjnþ fn;j ð17Þ

n ¼ �UDt

Aj ¼ jsign
2ðfj � fjþjsignÞ

Dn3
jþjsign=2

þ fn;jþjsign þ fn;j
Dn2

jþjsign=2

Bj ¼
3ðfjþjsign � fjÞ

Dn2
jþjsign=2

þ jsign
fn;jþjsign þ 2f n;j

Dnjþjsign=2
ð18Þ

jsign ¼ �1ðU P 0Þ; jsign ¼ 1ðU < 0Þ
In the present paper, the CIP method based on Eqs. (17) and (18) is called the CIP–CUV method [2,3]. To investigate the accu-
racy of the CIP–CUV method, we solve the scalar wave equation as a test problem [3]. For simplicity, the scalar velocity is
constant in the computational domain. The initial profile is
f ðx; t ¼ 0Þ ¼ 2þ sinð2pxÞ
fxðx; t ¼ 0Þ ¼ 2pcosð2pxÞ ð19Þ

0ð6 x 6 1Þ
The numerical profiles after t = 4.0 are compared with the exact solution. The grid dependencies of the original CIP method
and the CIP–CUV method are then investigated. The numerical error is evaluated using the following equation:
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPMX
i ðfNum � fexactÞ2

q
PMX

i fexact

ð20Þ
where fNum and fexact are numerical and exact solutions, respectively, and MX corresponds to the number of grid points. The
metrics can be calculated using the second order central difference scheme
xn;j ¼
xjþ1 � xj�1

2Dn
ð21Þ
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The grid spacing changes at the center point discontinuously.
rðiÞ ¼
1:0 IL 6 i 6 IR

a otherwise

�
ð22Þ
where a ¼ ð0:5;1:0;1:2;1:5Þ. Therefore, the mesh size is Dxi ¼ Dx � rðiÞ in which
Dx ¼ 1=
XMX

i¼0

rðiÞ ð23Þ
The number of grid points in the mesh is MX ¼ ð100;200;500;1000;2000Þ for each a. IL ¼ MX=4; IR ¼ ILþ 20NM � 1 and
NM = MX/100 are applied to each of these numbers of grid points. The numerical results obtained by Eqs. (8) and (17) are
shown in Figs. 1 and 2. Although the original CIP method maintains third-order accuracy independent of a, the numerical
results obtained by the CIP–CUV method are less accurate than those of the original CIP method. Care must be taken in
the application of the CIP–CUV method to the non-equally spaced grid.

2.3. Problems of the curvilinear coordinates CIP method and the improvement of the CIP method

In the present section, we investigate the deterioration of the accuracy of the CIP–CUV method. Although the treatment of
the advection phase is quite different between Eqs. (8) and (17), the profiles of f and F must always coincide at each time
step. It is of note to compare F ¼ FðnÞ at n ¼ �UjDt ¼ �ðnx;juÞDt and f ¼ f ðxÞ at x ¼ �uDt. The profiles of F in the CIP–CUV
method can be written by
FðnÞ ¼ Ajn
3 þ Bjn

2 þ fn;jnþ fj ¼ Ajð�UDtÞ3 þ Bjð�UDtÞ2 þ fn;jð�UDtÞ þ fj

¼ Ajn
3
x;jð�uDtÞ3 þ Bjn

2
x;jð�uDtÞ2 þ fn;jnx;jð�uDtÞ þ fj ¼ Ajn

3
x;j � x3 þ Bjn

2
x;j � x2 þ fn;jnx;j � xþ fj ð24Þ
where Ajn
3
x;j and Bjn

3
x;j must correspond with aj and bj. Each coefficient can be rewritten as follows:
Aj � n3
x;j ¼ jsign

2ðfj � fjþjsignÞ
Dn3

jþjsign=2

þ fn;jþjsign þ fn;j
Dn2

jþjsign=2

" #
� 1
x3

n;j

¼ jsign
2ðfj � fjþjsignÞ
ðDnjþjsign=2 � xn;jÞ3

þ ðfn;jþjsign þ fn;jÞ � xn;j

ðDnjþjsign=2 � xn;jÞ2

" #
–aj ð25Þ

Bj � n2
x;j ¼

3ðfjþjsign � fjÞ
Dn2

jþjsign=2

þ jsign
fn;jþjsign þ 2f n;j

Dnjþjsign=2

" #
� 1
x2

n;j

¼ 3ðfjþjsign � fjÞ
ðDnjþjsign=2 � xn;jÞ2

þ jsign
ðfn;jþjsign þ 2f n;jÞ � xn;j

ðDnjþjsign=2 � xn;jÞ

" #
–bj ð26Þ

fn;jnx;j – f x;j ð27Þ
The coefficients of Eqs. (25) and (26) would not generally coincide with those of Eq. (10). The denominator in Eq. (10) is ex-
pressed using the grid spacing in an upwind cell. However, Dxjþjsign=2 – Dnjþjsign=2 � xn;j in general because metric xn of Eqs. (25)
Fig. 1. Numerical results (Eq. (8)).



Fig. 2. Numerical results (Eq. (17)).
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and (26) is evaluated by the central difference scheme. As long as the metrics are estimated by the central difference scheme,
the coefficients of Eq. (18) do not agree with those of Eq. (10). In order to satisfy the equality condition, we should evaluate
the metrics calculated using the same stencils as in the original CIP method. Although fnnx ¼ fx is satisfied analytically, Eq.
(27) is not consistent numerically. Therefore, the gradient of physical quantity fn in the computational plane should be com-
puted using the following expression fn;j ¼ fx;j=nx;j. From the above discussion, the deterioration of accuracy of the CIP–CUV
method is caused by inappropriate evaluation of the metrics and the gradient value of the physical quantities. Here, we re-
write the coefficients of interpolation function of the CIP–CUV method.
Aj � ~n3
x;j ¼ jsign

2ðfj � fjþjsignÞ
Dn3

jþjsign=2

þ
~f n;jþjsign þ ~f n;j

Dn2
jþjsign=2

" #
� 1
~x3

n;jþjsign=2

¼ jsign
2ðfj � fjþjsignÞ

ðDnjþjsign=2 � ~xn;jþjsign=2Þ3
þ ð

~f n;jþjsign þ ~f n;jÞ=~xn;jþjsign=2

ðDnjþjsign=2 � ~xn;jþjsign=2Þ2

" #
¼ aj

Bj � ~n2
x;j ¼

3ðfjþjsign � fjÞ
Dn2

jþjsign=2

þ jsign
~f n;jþjsign þ 2~f n;j

Dnjþjsign=2

" #
� 1
~x2

n;jþjsign=2

¼ 3ðfjþjsign � fjÞ
ðDnjþjsign=2 � ~xn;jÞ2

þ jsign
~f n;jþjsign þ 2~f n;j

ðDnjþjsign=2 � ~xn;jÞ

" #
� 1
x2

n;jþjsign=2

¼ bj

~f n;jþjsign ¼ fx;jþjsign � ~xn;jþjsign=2

~f n;j ¼ fx;j � ~xn;jþjsign=2 ð28Þ
~xn;j is the metric computed by the same stencils used in the original CIP method. In order to satisfy consistency with the ori-
ginal CIP method, the metrics must be evaluated as ~xn;j ¼ ~xn;jþjsign ¼ ~xn;jþjsign=2 between the grid points of xj and xjþjsign. The gra-
dient value of the profile can be written as follows:
Fnð~nÞ ¼ 3Aj
~n2 þ 2Bj

~nþ ~f n;j

¼ 3Ajð�UDtÞ2 þ 2Bjð�UDtÞ þ ~f n;j

¼ 3Aj
~n2

x;jð�uDtÞ2 þ 2Bj
~nx;jð�uDtÞ þ ~f n;j

¼ 1
~nx;j

� ð3ajx2 þ 2bjxþ fx;jÞ ¼
fx;j

~nx;j

¼ ~f n;j ð29Þ
We can obtain the gradient value in the physical plane by coordinate transformation thus:
fx;j ¼ ~f n;j � ~nx;j ð30Þ
The equation set of the reconstructed CIP method is summarized as follows:
Fð~nÞ ¼ Aj
~n3 þ Bj

~n2 þ ~f n;j
~nþ fj

Fnð~nÞ ¼ 3Aj
~n2 þ 2Bj

~nþ ~f n;j ð31Þ



Table 1
One-dim

Case

1D-1
1D-2

1D-3
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Aj ¼ jsign
2ðfj � fjþjsignÞ

Dn3
jþjsign=2

þ
~f n;jþjsign þ ~f n;j

Dn2
jþjsign=2

" #

Bj ¼
3ðfjþjsign � fjÞ

Dn2
jþjsign=2

þ jsign
~f n;jþjsign þ 2~f n;j

Dnjþjsign=2

" #
~f n;jþjsign ¼ fx;jþjsign � ~xn;jþjsign=2

~f n;j ¼ fx;j � ~xn;jþjsign=2

~n ¼ �UDt ¼ �~nx;j � uDt ð32Þ
~xn ¼ jsign � ðxjþjsign � xjÞ=Dn ð33Þ
The present method can obtain the same numerical results computed by the original CIP method because the numerical
scheme based on Eqs. (31)–(33) exactly corresponds to the original CIP method.

2.4. General case of advection equation

The non-advection phase needs to be solved when the advection equation has a different velocity in space. In the original
CIP method, the advection and non-advection equations are solved separately. At first, Eqs. (13) and (14) are solved using the
original CIP method. The arbitrary numerical method can be applied to Eqs. (15) and (16) in the non-advection phase. In the
present study, the non-advection equations are computed by the central difference scheme. The present method uses metric
~xn redefined to maintain the third-order accuracy of the original CIP method. The present CIP method needs two types of
metric when the metric in the non-advection phase is estimated by the central difference scheme. Here, we consider the
treatment of the non-advection equations. The present CIP method can obtain the exact gradient value fx without solving
Eq. (5) because the present CIP method is equivalent to the original CIP method. Therefore, we can also solve Eq. (7) after
Eq. (14) is solved in the advection phase.

Eqs. (7) and (16) are compared to investigate the appropriate non-advection equations. Table 1 shows the governing
equations used in each numerical scheme. In case 2, ~f n is transformed inversely before solving the non-advection equation
and fx is computed. Then, Eq. (7) is solved in the non-advection phase. Case 3 takes Eq. (16) for ~f n as the non-advection
equation.

When the advection velocity is different in space and time, the advection velocity must be carefully evaluated. Yabe
et al.[3] proposed that the advection velocity should be evaluated as �uj ¼ ðuj þ ujupÞ=2 of uj at xj and ujup at xjup ¼ xj � ujDt
to maintain the numerical accuracy. The advection velocity is also evaluated using their method in the present problem.

Here, wave propagation with different velocity in space is solved on curvilinear coordinates[3]. The computational do-
main has unit length. The profile of f ðxÞ ¼ expð�ðx� 0:2Þ2=0:052Þ and fxðxÞ ¼ �2ðx� 0:2Þ=0:052 � exp½�ðx� 0:2Þ2=0:052� is
imposed as the initial condition. The velocity profile in the computational domain is u ¼ 1=ð1þ axÞ. The grid spacing is
decided using Eq. (34).
rðiÞ ¼
1:0þ bsinð2pði� ILÞ=ðIR� ILÞÞ IL 6 i 6 IR

1:0 otherwise

�
ð34Þ
where b ¼ ð0:0; 0:1;0:2;0:3; 0:5Þ. The grid spacing at each location is defined as Dxi ¼ Dx � rðiÞ. Dx is computed by Eq. (23). The
time step is fixed at Dt ¼ 0:2 � Dx. The total number of grid points varies with MX ¼ ð100;200;500;1000;2000Þ. IL = MX/4,
IR ¼ ILþ 60NM � 1 and NM = MX/100 are applied to each of these numbers of grid points. Boundary condition is derived ana-
lytically and imposed at the stencils. Numerical results after t = 0.4 are compared with the analytic solution. Numerical error
is calculated using Eq. (20). Metrics xn in the non-advection phase are evaluated by Eq. (21). Although the velocity gradient ux

can be computed analytically, we evaluate ux as nxun in the present test. Note that the non-advection terms are solved by the
fourth order Runge–Kutta method to maintain the numerical accuracy of the CIP method.

Fig. 3 shows the numerical results obtained by case 1D-1. The accuracy of the CIP–CUV method is less than second order
accuracy even when the grid spacing is slightly changed ðb ¼ 0:1Þ. These results mean that the original CIP method should
not be applied to curvilinear coordinates. Fig. 4 shows the results of case 1D-2. Third-order accuracy can be maintained in all
cases when Eq. (3) is solved as the non-advection equation. Fig. 5 shows the results of case 1D-3. There is no difference be-
tween the results of case 1D-1 and 1D-3. Case 1D-3 can not maintain high order accuracy and Eq. (16) is not appropriate as
the non-advection equation. Un contains information greater than two stencils because U in Eq. (16) has the metric evaluated
ensional cases.

CIP method Advection eqs. Value Metric Non-advection eqs. Value Metric

CIP–CUV Eqs. (13) and (14) f ; fn Eq. (21) Eqs. (15) and (16) f ; fn Eq. (21)
Present 1 Eqs. (13) and (14) f ;~f n

Eq. (33) Eqs. (6) and (7) f ; fx Eq. (21)

Present 2 Eqs. (13) and (14) f ;~f n
Eq. (33) Eqs. (15) and (16) f ;~f n

Eq. (21)



Fig. 3. CIP–CUV method (case 1D-1).

Fig. 4. Present CIP method (case 1D-2).

Fig. 5. Present CIP method (case 1D-3).
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by the central difference scheme. The computation of ux in Eq. (7) is sufficient in only two stencils. Therefore, the use of Eq.
(16) does not fit the non-advection phase. From these results, the CIP method on curvilinear coordinates should solve the
equation sets on physical coordinates.
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The present method may require larger computational memory to use two different metrics for the advection and non-
advection phases and imposes computational time for the coordinate transformation of the gradient variables. Table 2 shows
the comparison of the computational time and the metrics used in the CIP–CUV method and present CIP method. These re-
sults are obtained at MX = 2000 in the test problem in Section 2.4. In case 1D-2(1), the increment of computational time cor-
responds to 3% although metrics ~xn and xn in each phase are memorized in the computer. Even when metrics ~xn in the
advection phase are computed at each time step, the computational time of the present method is larger than that of the
CIP–CUV method only by 12%.
2.5. Investigation on the present method

One of the features in the CIP scheme is to advect the gradient value based on the governing equation. The present meth-
od uses fn in the advection phase and fx in the non-advection phase when the gradient value is solved. Can the gradient values
on different coordinates be used to solve the advection and non-advection equations in each phase? Here, we investigate this
numerical procedure based on the gradient advection equations.

The advection and the non-advection equations of the gradient value fn can be written as
Table 2
Compar

Case

1D-1
1D-2
1D-2
@fn
@t
þ U

@fn
@n
¼ 0 ð35Þ

@fn
@t
¼ �Unfn �

@

@n
un

xn
f

� �
ð36Þ
Eq. (35) is solved using the present CIP method and fn is converted to fx after advection. This numerical procedure means that
Eq. (35) is transformed to physical coordinates.
1
xn

@fn
@t
þ U

@fn
@n

� �
¼ 0 ð37Þ

@fx

@t
þ nxu

@

@x
1
nx

fx

� �
¼ 0 ð38Þ

@fx

@t
þ u

@fx

@x
¼ � nxu

@

@x
1
nx

fx

� �� �
¼ Residual ð39Þ
Eq. (39) contains the residual term caused by the coordinate transformation. However, the residual term does not need to be
solved as discussed below. In the CIP method, the right-hand side (RHS) of Eq. (39) is treated as the non-advection term.
When fn in Eq. (36) is also converted to fx by coordinate transformation, we obtain Eq. (41).
1
xn

@fx

@t
¼ 1

nx
�Unfn �

@

@n
un

xn
f

� �� �
ð40Þ

@fx

@t
¼ � @

@n
ðnxuÞfx �

@

@x
ðuxf Þ ð41Þ
In the non-advection phase, the residual term in Eq. (39) is added to the RHS of Eq. (41).
@fx

@t
¼ � @

@n
ðnxuÞfx �

@

@x
ðuxf Þ þ Residual ð42Þ
The rearranged form of Eq. (42) can be written as
@fx

@t
¼ � @

@n
ðnxuÞfx �

@

@x
ðuxf Þ � nxu

@

@x
1
nx

fx

� �� �
¼ � @

@x
ðuxf Þ � ux

@f
@x
¼ Hx � ux

@f
@x

ð43Þ
The residual term in Eq. (39) is canceled by the terms on the RHS of Eq. (36) and we obtain Eq. (3). This investigation means
that the gradient advection equations on curvilinear coordinates can be transformed to physical coordinates and vice versa.
Therefore, the non-advection equation on the physical coordinates can be solved after the computation of the advection
equation on the curvilinear coordinates.
ison of the CIP–CUV and the present CIP method in the one-dimensional case.

CIP method CPU time (s) Time ratio to the CIP–CUV Metric in advection

CIP–CUV 6.31 1.00 Memorized
(1) Present 1 6.52 1.03 Memorized
(2) Present 1 7.05 1.12 Not memorized
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3. Two-dimensional CIP method in curvilinear coordinates

In this section, we extend the present CIP method to a two-dimensional method. The advection equation in two dimen-
sions can be written as follows:
@f
@t
þ @ðuf Þ

@x
þ @ðvf Þ

@y
¼ 0 ð44Þ

@f
@t
þ u

@f
@x
þ v @f

@y
¼ �f

@u
@x
þ @v
@y

� �
ð45Þ
When Eq. (45) is rewritten on the curvilinear coordinates,
@f
@t
þ U

@f
@n
þ V

@f
@g
¼ H ð46Þ

H ¼ �f nx
@u
@n
þ gx

@u
@g
þ ny

@v
@n
þ gy

@v
@g

� �

where U ¼ nxuþ nyv ; V ¼ gxuþ gyv .

The gradient advection equation can be derived in the same manner as in the one-dimensional case. We take the differ-
entiations of Eq. (46) for n and g.
@fn
@t
þ U

@fn
@n
þ V

@fn
@g
¼ Hn � Un

@f
@n
þ Vn

@f
@g

� �
ð47Þ

@fg
@t
þ U

@fg
@n
þ V

@fg
@g
¼ Hg � Ug

@f
@n
þ Vg

@f
@g

� �
ð48Þ
Eqs. (46)–(48) are split into the advection and the non-advection equations.
Advection phase
@f
@t
þ U

@f
@n
þ V

@f
@g
¼ 0 ð49Þ

@fn
@t
þ U

@fn
@n
þ V

@fn
@g
¼ 0 ð50Þ

@fg
@t
þ U

@fg
@n
þ V

@fg
@g
¼ 0 ð51Þ
Non-advection phase
@f
@t
¼ H ð52Þ

@fn
@t
¼ Hn � Un

@f
@n
þ Vn

@f
@g

� �
ð53Þ

@fg
@t
¼ Hg � Ug

@f
@n
þ Vg

@f
@g

� �
ð54Þ
There are two kinds of multi-dimensional methods for the CIP method. One is the directional splitting method to separately
solve the advection equation for each direction. The other is to construct the interpolation function in the multi-dimension.
At first, we extend the present CIP method to a multi-dimensional solution based on a splitting technique.
3.1. Extension to multi-dimensional scheme by the splitting technique

When we apply the directional splitting method, the advection equations (Eqs. (49)–(51)) are split into two equations
with respect to each direction. First, the numerical profiles of f, fn and fg are advanced to n direction.
@f
@t
þ U

@f
@n
¼ 0 ð55Þ

@fn
@t
þ U

@fn
@n
¼ 0 ð56Þ

@fg
@t
þ U

@fg
@n
¼ 0 ð57Þ
Second, the physical quantities of f, fn and fg are solved to g direction.
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@f
@t
þ V

@f
@g
¼ 0 ð58Þ

@fn
@t
þ V

@fn
@g
¼ 0 ð59Þ

@fg
@t
þ V

@fg
@g
¼ 0 ð60Þ
An M-type CIP scheme[6] is used as the splitting technique. This method takes the following procedures.

1. Eqs. (61) and (62) are solved by the CIP method to advance the profile in n direction. Eq. (63) is solved by the 1st order
upwind scheme. The numerical profiles are advanced using the following equations:
FðnÞ ¼ An3 þ Bn2 þ fnnþ f ð61Þ
FnðnÞ ¼ 3An2 þ 2Bnþ fn ð62Þ

FgðnÞ ¼ fg � UDt
fg;jþjsign;k � fg;j;k

jsignDn
ð63Þ

U ¼ nxuþ nyv
jsign ¼ �1ðU P 0Þ; jsign ¼ 1ðU < 0Þ
2. Eqs. (64) and (65) are solved by the CIP method to advance the profile in g direction. Eq. (66) is solved by the first-order
upwind scheme. The numerical scheme can be written in the same manner as for n direction.
FðgÞ ¼ Ag3 þ Bg2 þ fggþ f ð64Þ
FgðgÞ ¼ 3Ag2 þ 2Bgþ fg ð65Þ

FnðgÞ ¼ fn � VDt
fn;j;kþksign � fn;j;k

ksignDg
ð66Þ

V ¼ gxuþ gyv
ksign ¼ �1ðV P 0Þ; ksign ¼ 1ðV < 0Þ
The M-type CIP scheme is based on the empirical fact that (1) an advection equation is needed to accurately solve for the
direction of the advection, and (2) a numerical scheme with high accuracy is not required to solve the advection equation for
the direction perpendicular to that of the advection.

In the CIP–CUV method, the coefficient of the CIP function and the contravariant velocity are computed from Eqs. (17) and
(18). The numerical variables in the CIP–CUV method are f, fn and fg. Coordinate transformation is not needed to obtain the
gradient valiables on the curvilinear coordinates. The metrics in the CIP–CUV method are computed by the second order cen-
tral difference scheme and are unique in the advection and the non-advection phases. J is the jacobian.
xnj;k
¼

gy

J

� �
j;k

¼ ðxjþ1;k � xj�1;kÞ=2Dn

xgj;k
¼ � ny

J

� �
j;k

¼ ðxj;kþ1 � xj;k�1Þ=2Dg

ynj;k
¼ �gx

J

� �
j;k

¼ ðyjþ1;k � yj�1;kÞ=2Dn

ygj;k
¼ nx

J

� �
j;k

¼ ðyj;kþ1 � yj;k�1Þ=2Dg

Jj;k ¼
1

xnj;k
ygj;k
� xgj;k

ynj;k

ð67Þ
The present CIP method uses Eqs. (32) and (33) to compute the coefficients and the velocities. The coefficients of the inter-
polation function A and B contain the gradient variables. When the present CIP scheme is applied to the advection phase, the
gradient values ~f n;

~f g are computed by coordinate transformation (Eq. (68)).
~f n

~f g

 !
¼

~xn ~yn

~xg ~yg

� �
fx

fy

� �
ð68Þ
In the present CIP scheme, different metrics are used in the advection and the non-advection phases. The metrics in the
advection phase are evaluated using the stencils of the CIP interpolation and are computed by the following equations.
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~xn;j;k ¼ jsignðxjþjsign;k � xj;kÞ=Dn ¼
~gyeJ

 !
j;k

~xg;j;k ¼ ksignðxj;kþksign � xj;kÞ=Dn ¼ �
~nyeJ

 !
j;k

~yn;j;k ¼ jsignðyjþjsign;k � xj;kÞ=Dg ¼ �
~gxeJ

 !
j;k

~yg;j;k ¼ ksignðyj;kþksign � xj;kÞ=Dg ¼
~nxeJ
 !

j;keJ j;k ¼
1

~xn;j;k~yg;j;k � ~yn;j;k~xg;j;k
ð69Þ
One of the features in the present CIP scheme is to use the gradient value of the different coordinates in each phase. Before
computing the non-advection phase, the gradient values advanced by the present CIP scheme are inversely transformed to
the values in the physical domain using Eq. (70).
fx

fy

� �
¼

~nx ~gx

~ny ~gy

 !
~f n

~f g

 !
ð70Þ
~nx; ~ny; ~gx and ~gy are computed from Eq. (69). Eqs. (50), (51), (53) and (54) can be also rewritten on the physical coordinates
when fx and fy are computed by inverse transformation in the non-advection phase. Non-advection equations are solved by
the central difference scheme.

Fig. 6 shows the concept of coordinate transformation between the physical and computational planes. The physical plane
is projected onto the computational plane with an orthogonal grid. The stencils of~rj;k; ~rjþjsign;k; ~rjþjsign;kþksign and~rj;kþksign in an
upwind cell correspond to those of ~Cj;k; ~Cjþjsign;k; ~Cjþjsign;kþksign and ~Cj;kþksign, respectively. P corresponds to the locations in the
upwind cell on the physical plane and P0 is that on the computational plane. The physical quantities at location P0 are ad-
vected by the CIP method.
n ¼ axyþ bxþ cy

g ¼ a0xyþ b0xþ c0y
x ¼ �uDt

y ¼ �vDt ð71Þ
The accuracy of the CIP method depends on the locations of n and g in the upwind cell[3]. In order to denote the coor-
dinate, there are some kinds of smooth function, e.g. polynomial interpolation, rational function interpolation, or cubic spline
interpolation. We can apply these functions as the coordinate function to the present method. However, these functions usu-
ally consume much of computational time. In the present paper, we define the semi-nonlinear coordinate function as Eq.
(71) to compute those locations accurately and to save the computational cost. The coordinates on the computational plane
are defined using the four stencils on the physical coordinates. Location P0 can be decided using Eq. (71) from location P when
the form of the coordinate function is decided. The coefficients of a; b and c in Eq. (71) are decided from the physical coor-
dinates of an upwind. Locations n and g in the upwind cell and the metrics at each node can be computed using Eq. (71). The
Fig. 6. Concept of the coordinate transform.
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computation of the coefficient in Eq. (71) requires the inverse of the matrix. When the coordinates with the index of
ðjþ jsign; kþ ksignÞ are not used for coordinate transformation, the coordinate function is a linear function (a ¼ 0 and
a0 ¼ 0). However, the maximum CFL number is restricted by 0.5 in general when the stencil at ðjþ jsign; kþ ksignÞ is not
used. In the orthogonal grid, a ¼ 0; c ¼ 0; a0 ¼ 0 and b0 ¼ 0, automatically. In the linear coordinate function, b; c; b0 and
c0 correspond to metrics ~nx; ~ny; ~gx and ~gy, respectively, in Eq. (70).

3.1.1. Non-advection equations for the present CIP scheme
In the present CIP method, the non-advection equations on the physical coordinates are projected and solved to the cur-

vilinear coordinates.
Table 3
Two-di

Case

2D-1
2D-2

2D-3
@f
@t
¼ H ð72Þ
Take the differentiation of Eq. (72) to derivate the non-advection equations on the gradient value for the physical
coordinates.
@fx

@t
¼ Hx �

@u
@x

fx þ
@v
@x

fy ð73Þ

@fy

@t
¼ Hy �

@u
@y

fx þ
@v
@y

fy ð74Þ
The spatial derivatives in the equations are transformed to curvilinear coordinates using the chain rule when solving the
non-advection phase.
@H
@x
¼ nx

@H
@n
þ gx

@H
@g

@H
@y
¼ ny

@H
@n
þ gy

@H
@g

ð75Þ
ux; uy; vx and vy are also computed using the differential chain rule as for Eq. (75) (H is replaced by u or v). The metrics in the
non-advection phase are evaluated by the second order central difference scheme in the same manner as the one-dimen-
sional case.

Table 3 shows the governing equations used in the CIP–CUV method, the present CIP method and the present CIP method
with semi-nonlinear function. The non-advection equations in Table 2 are solved after the advection equations are computed
by the CIP–CUV method or the present CIP method.

3.2. Solid revolution problem over the wavy grid

The solid revolution problem is solved as the test problem in the multi-dimensional case to investigate the ability of the
present CIP method. A wavy grid is created using Eq. (76)[7].
x0 ¼ ðj� 1Þ=ðMX � 1Þ

y0 ¼ ðk� 1Þ=ðMY � 1Þ

xj;k ¼ 100 � ðx0 þ 0:03sinð2pay0ÞÞ

yj;k ¼ 100 � ðy0 þ 0:03sinð2pax0ÞÞ ð76Þ
where a ¼ ð0;1;2;3Þ. a ¼ 0 corresponds to the orthogonal grid. The number of grid points of the mesh is changed with
MX ¼ ð50;100;200;500;1000Þ. In all computations, MX is equivalent to MY. Fig. 7 shows the computational grids with
a ¼ ð1;2;3Þ.

The center of rotation is located at ðxc; ycÞ ¼ ð50;50Þ. The initial profile is
f ðx; yÞ ¼
1þcos p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xcÞ2þðy�ycÞ2
p

=R
� 	

2 ðx� xcÞ2 þ ðy� ycÞ
2
< R

0 otherwise

8<: ð77Þ
mensional test cases.

CIP Advection eqs. Value Metric Non-advection eqs. Value Metric Coordinate function

CIP–CUV Eqs. (49)–(51) f ; fn ; fg Eq. (67) Eqs. (52)–(54) f ; fn; fg Eq. (67) Not used
Present Eqs. (49)–(51) f ;~f n;

~f g Eq. (69) Eqs. (72)–(74) f ; fx; fy Eq. (67) Linear ða ¼ 0Þ
Present Eqs. (49)–(51) f ;~f n;

~f g Eq. (71) Eqs. (72)–(74) f ; fx; fy Eq. (67) Semi-nonlinear



Fig. 7. Computational grid at a ¼ ð1;2;3Þ with MX = MY = 50.
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where ðxc; ycÞ ¼ ð26;51Þ. The initial values of f, fx and fy are obtained from Eq. (77) and fixed with zero values at the boundary
of the computational domain. The time step is Dt ¼ 1:0. Revolution speed is set so that one revolution is completed after
16MX steps. The CFL number at Dt ¼ 1:0 corresponds to 0.28 in all computations. The spatial velocity profiles imposed by
Eq. (78) are:
u ¼ �2pðy� ycÞ=ð16MXÞ
v ¼ �2pðx� xcÞ=ð16MXÞ

�
ð78Þ
Numerical error to the initial profile after one revolution is evaluated by Eq. (20). Figs. 8–10 show the comparison of the
numerical error obtained by the CIP–CUV method, the present CIP method and the present CIP method with semi-nonlinear
function, respectively. The CIP–CUV method has third-order accuracy with equal-spaced grid ða ¼ 0Þ. As a increases, numer-
ical accuracies of the CIP–CUV method reduce to the second order. The CIP–CUV method strongly depends on the mesh
shape. Numerical accuracies of case 2D-2 are 2.80, 2.81, 2.81 and 2.77 with a ¼ 0;1;2 and 3, respectively. Case 2D-2 is highly
accurate even when the advection equation is solved on the skewed grid shape with a ¼ 3 in spite of the use of the linear
coordinate function. As shown in Fig. 10, numerical accuracy of the case 2D-3 method does not depend on the grid spacing
when the coordinate function of the semi-nonlinear type is used. Numerical accuracy of case 2D-3 is 2.80, even for the worst
case with a ¼ 0. Numerical accuracies with a ¼ 1;2 and 3 have accuracies of 2.82, 2.83 and 2.84, respectively, better than
that of a ¼ 0. Numerical errors with a ¼ 1;2 and 3 approach the result of a ¼ 0 as the number of mesh grid points increases.
Consequently, those cases have slightly steep gradients. The use of splitting procedure usually deteriorates numerical accu-
racy. However, the present method maintains higher order accuracy although the first order upwind scheme is applied to the
normal direction to that of the advection.

Fig. 11 shows the comparison of the profile after one revolution with the initial shape at a ¼ 3 of case 2D-3. The present
CIP method preserves the initial shape after one revolution. The present CIP method can solve the advection equations with
third-order accuracy over a complicated mesh even though this requires computational costs for the coordinate
transformation.
Fig. 8. CIP–CUV method (case 2D-1 by splitting technique).



Fig. 10. Present CIP method (case 2D-3 by splitting technique).

Fig. 9. Present CIP method (case 2D-2 by splitting technique).

Fig. 11. Solid revolution problem obtained by the present CIP scheme with semi-nonlinear function (MX = MY = 50, a ¼ 3).
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Table 4 shows the comparison of the computational time in the CIP–CUV method and present CIP method. These results
are obtained at MX = MY = 50 in the solid revolution problem. Cases 2D-2 and 2D-3(1) in the present CIP require an incre-
ment of the computational cost of about 5%. In case 2D-3(2), the metrics in the advection phase are computed at every time
step. The computational time in that case takes 1.19 times greater than the CIP–CUV method.



Table 4
Comparison of the CIP–CUV and present CIP method in the two-dimensional case.

Case CIP method CPU time (s) Time ratio to the CIP–CUV Metric in advection

2D-1 CIP–CUV 4.07 1.00 Memorized
2D-2 Present 4.23 1.04 Memorized
2D-3(1) Present 4.26 1.05 Memorized
2D-3(2) Present 4.83 1.19 Not memorized
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3.3. Extension to multi-dimensional CIP method by direct technique

The present approach is also straightforward to the multi-dimensional CIP method by direct technique. There are some
versions of the multi-dimensional CIP method. In the present analysis, we use the B-type CIP method in two dimensions [8].
The B-type CIP method assumes that all the variables ðf ; fn; fgÞ have the continuity at grid points (j, k),
ðjþ jsign; kÞ; ðj; kþ ksignÞ and ðjþ jsign; kþ ksignÞ. Each coefficient of the interpolation function is shown in the appendix.
In the advection phase, metrics for coordinate transformation are computed from Eq. (69) and the gradient values fn and
fg are transformed by Eq. (68). The differential terms of non-advection phase in Eqs. (72)–(74) are evaluated by the central
difference scheme. To demonstrate the efficiency of the present method, some numerical tests in two dimensions are con-
ducted in this section.

At first, we apply the direct technique to solve the solid revolution problem in the previous section and validate the accu-
racy of the present CIP method by the direct technique. The computational conditions correspond to those in Section 3.2.
Figs. 12–14 show the comparison of the numerical error of the case 2D-1, 2D-2 and 2D-3 by the direct technique, respec-
tively. The CIP–CUV method is less than third order accuracy except a ¼ 0. The CIP–CUV method has the dependency of
the mesh shape. Numerical accuracies of case 2D-2 are 3.00, 3.00, 3.00 and 2.99 with a ¼ 0;1;2 and 3, respectively. In
the case 2D-3, numerical accuracies with a ¼ 0;1;2 and 3 have accuracies of 3.00, 3.06, 3.07 and 3.00. As shown in Figs.
9 and 10, the numerical accuracies of the splitting technique in the present problem are 2.80, 2.81, 2.81 and 2.77 in the case
2D-2, and 2.80, 2.82, 2.83, and 2.84 in the case 2D-3. The results of the cases 2D-2 and 2D-3 by the direct technique are more
accurate than those by the splitting technique. The present method by the direct technique with the semi-nonlinear function
maintains the third-order accuracy in all the cases.

Second, we solve Zalesak’s solid revolution problem by the splitting and direct techniques. The details of the problem are
given in [9]. Fig. 15(a) shows the schematic picture of Zalesak’s problem over the wavy grid. The computational grid is cre-
ated by Eq. (76) with a ¼ 3:0 and MX = MY = 100. The velocity field on the computational domain is specified as
u ¼ �2pðy� 50Þ; v ¼ 2pðx� 50Þ: ð79Þ
The time step is Dt ¼ 1=6400. Revolution speed is set so that one revolution is completed after 6400 steps. The outer
boundary condition is imposed as a free-slip boundary. Figs. 12(c) and 15(b) show the initial profiles and the numerical pro-
files after one complete revolution. The present method maintains the shape of the initial profile and gives a stable, weakly
diffusive but non-monotone result. The present method can easily incorporate the digitizer function [10]. Fig. 15(d) shows
the numerical result obtained using the digitizer function. The numerical profile can be maintained sharply. Fig. 15(e) and (f)
show the numerical results obtained by the splitting technique. These result by the splitting technique have the asymmetric
profiles because of the skewed computational mesh. The profile by the splitting technique is still asymmetric even when the
digitizer function is applied.
Fig. 12. CIP–CUV method (case 2D-1 by direct technique).



Fig. 14. Present CIP method (case 2D-3 by direct technique).

Fig. 13. Present CIP method (case 2D-2 by direct technique).

5588 N. Fujimatsu, K. Suzuki / Journal of Computational Physics 229 (2010) 5573–5596
Next, we apply the present scheme to frontogenesis problem [11] and demonstrate that the scheme provides good results
over the wavy grid even if the velocity is strongly fluctuating and more complex. The details of the problem are given by
Doswell [12] and the analytical solution is known. In the problem, a circular vortex is assumed and the velocity is given by
vx ¼ �vT
y
r

ð80Þ

vy ¼ vT
x
r

ð81Þ

vTðrÞ ¼ sech2ðrÞtanhðrÞ=vT0: ð82Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and vT0 is a constant which is determined so that maximum value of vT is equal to unity. The initial con-

dition of f is distributed in the y-direction and given by
f ¼ �tanhðy=2Þ: ð83Þ
The wavy grid is created by Eq. (84).
x0 ¼ 8ðj� 1Þ=ðMX � 1Þ � 4
y0 ¼ 8ðk� 1Þ=ðMY � 1Þ � 4
xj;k ¼ x0 þ 0:3sinð2pay0Þ
yj;k ¼ y0 þ 0:3sinð2pax0Þ ð84Þ
where a ¼ 3. a ¼ 0 corresponds to the orthogonal grid. In the computations, MX = MY = 60. The numerical tests are per-
formed with the CFL = 0.4. The numerical result of the present scheme by the direct technique, that by the splitting technique
and the analytical result are shown in Fig. 16. The coordinate function in the present scheme uses the semi-nonlinear



Fig. 15. (a) Schematic picture of Zalesak’s problem over the wavy grid. The value of f inside a cut-out cylinder is 1.0, while outside f = 0.0. Contour plots and
three-dimensional views of the profile of f: (b) Initial profiles, (c) the numerical result after one revolution by the direct technique,(d) the numerical result
after one revolution by the direct technique with the digitizer function, (e) the numerical result after one revolution by the splitting technique and (f) the
numerical result after one revolution by the splitting technique with the digitizer function.

N. Fujimatsu, K. Suzuki / Journal of Computational Physics 229 (2010) 5573–5596 5589
function. Although the computational grid has the wavy form, the numerical result by the directional technique is in good
agreement with the analytical solution. The numerical result by the splitting technique can not capture the details of the
vortex motion because the splitting technique deteriorates the numerical accuracy rather than that of the direct technique
in general. The numerical results of the three test problem show that the direct technique is more effective to accurately
capture the flowfield than the splitting technique.

The curvilinear coordinates are often employed to resolve flows near boundaries. In general, fine meshes are placed
around the boundaries. We construct mesh with large aspect ratio in order to investigate the capability of the present meth-
od on the different mesh size. The mesh system is defined as
xr;j ¼ 1þ bsinðcpðj� 1Þ=ðMX � 1ÞÞ
yr;k ¼ 1þ bsinðcpðk� 1Þ=ðMY � 1ÞÞ

x0j ¼
Xj

n¼1

xr;n

XMX

n¼1

xr;n

,

y0k ¼
Xk

n¼1

yr;n

XMY

n¼1

yr;n

,
hj ¼ 2paðx0j þ CxÞ
hk ¼ 2paðy0k þ CyÞ
xj;k ¼ Lx x0j þ Cx þ 0:03sinðhkÞ


 �
yj;k ¼ Ly y0k þ Cy þ 0:03sinðhjÞ


 �
ð85Þ



Fig. 16. (a) analytic solution ða ¼ 3Þ, (b) the numerical result by the direct technique ða ¼ 3Þ and (c) the numerical result by the splitting technique ða ¼ 3Þ.
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where a; b and c are the parameters for wavy shape; Cx and Cy are the grid parameters; Lx and Ly are size of the computa-
tional domain. We again solve Zalesak’s problem and frontogenesis problem. Lx ¼ Ly ¼ 100, Cx ¼ Cy ¼ 0:0 and MX = MY =100
are set in Zalesak’s problem. The velocity profile in Zalesak’s problem is specified by Eq. (79). Those of frontogenesis problem
are defined as Lx ¼ Ly ¼ 8, Cx ¼ Cy ¼ 0:5 and MX = MY =60. Eqs. (80), (81) and (82) are assumed as the velocity field in the
frontogenesis problem. In each test, a ¼ 3:0; b ¼ 0:9 and c ¼ 7:0. The aspect ratio of the computational grid corresponds
to about 20 in maximum. Fig. 17 shows the computational grid used in these test problems. We apply the case 2D-3 by direct
technique based on the type-B CIP method. The coordinate function is semi-nonlinear function.

Fig. 18 shows the contour plots and three-dimensional view of the numerical profile in Zalesak’s problem. The analytical
result and the numerical results of the present scheme are shown in Fig. 18(a) and (b), respectively. The numerical profile
in Fig. 18(b) losts the key hole of the solid body because the density of the mesh severely changes in the computational
domain. Fig. 18(c) shows the numerical result with the digitizer function. The numerical profile finely maintains the initial
shape over the mesh.
Fig. 17. Wavy grid: (a) Zalesak’s problem (MX = MY = 100). (b) frontogenesis problem (MX = MY =60).



Fig. 18. Contour plots (above) and three-dimensional views (below): (a) initial profile. (b) The numerical result after one revolution. (c) The numerical
result after one revolution with the digitizer function.
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Fig. 19 represents the numerical results of the frontogenesis problem. From comparison with the analytic solution in
Fig. 19(a), the numerical result (Fig. 19(b)) agrees well with the theoretical one. The scheme can stably capture the fine struc-
ture even wavy grid with the different mesh size.

3.4. Extension to three dimensions

Once the two-dimensional scheme is established, it is straightforward to extend our method to three dimensions. The
advection equation in three dimensions can be written as follows:
@f
@t
þ @ðuf Þ

@x
þ @ðvf Þ

@y
þ @ðwf Þ

@z
¼ 0 ð86Þ

@f
@t
þ u

@f
@x
þ v @f

@y
þw

@f
@z
¼ �f

@u
@x
þ @v
@y
þ @w
@z

� �
ð87Þ
Fig. 19. (a) Analytic solution and (b) the numerical result.
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When Eq. (87) is rewritten on the curvilinear coordinates,
@f
@t
þ U

@f
@n
þ V

@f
@g
þW

@f
@f
¼ H ð88Þ

H ¼ �f nx
@u
@n
þ gx

@u
@g
þ fx

@u
@f
þ ny

@v
@n
þ gy

@v
@g
þ fy

@v
@f
þ nz

@w
@n
þ gz

@w
@g
þ fz

@w
@f

� �

where U ¼ nxuþ nyv þ nzw; V ¼ gxuþ gyv þ gzw and W ¼ fxuþ fyv þ fzw.

The gradient advection equation can be derived in the same manner as in the one-dimensional case. We take the differ-
entiations of Eq. (88) for n; g and f.
@fn
@t
þ U

@fn
@n
þ V

@fn
@g
þW

@fn
@f
¼ Hn � Un

@f
@n
þ Vn

@f
@g
þWn

@f
@f

� �
ð89Þ

@fg
@t
þ U

@fg
@n
þ V

@fg
@g
þW

@fg
@f
¼ Hg � Ug

@f
@n
þ Vg

@f
@g
þWg

@f
@f

� �
ð90Þ

@ff
@t
þ U

@ff
@n
þ V

@ff
@g
þW

@ff
@f
¼ Hf � Uf

@f
@n
þ V f

@f
@g
þWf

@f
@f

� �
ð91Þ
Eqs. (89)–(91) are split into the advection and the non-advection equations. In the same manner as in the one-dimensional
and the two-dimensional cases, the advection equations are solved on the curvilinear coordinates and the non-advection
equations on the physical coordinates. First, the numerical profiles of f, fn; f g and ff are computed by the present CIP method.

Advection equations for the present CIP method
@fn
@t
þ U

@fn
@n
þ V

@fn
@g
þW

@fn
@f
¼ 0 ð92Þ

@fg
@t
þ U

@fg
@n
þ V

@fg
@g
þW

@fg
@f
¼ 0 ð93Þ

@ff
@t
þ U

@ff
@n
þ V

@ff
@g
þW

@ff
@f
¼ 0 ð94Þ
Non-advection equations for the present CIP method
In the present CIP method, the non-advection equations on the physical coordinates are projected and solved to the cur-

vilinear coordinates.
@f
@t
¼ H ð95Þ
Take the differentiations of Eq. (95) to derivate the non-advection equations on the gradient values for the physical
coordinates.
@fx

@t
¼ Hx �

@u
@x

fx þ
@v
@x

fy þ
@w
@x

fz ð96Þ

@fy

@t
¼ Hy �

@u
@y

fx þ
@v
@y

fy þ
@w
@y

fz ð97Þ

@fy

@t
¼ Hz �

@u
@z

fx þ
@v
@z

fy þ
@w
@z

fz ð98Þ
The spatial derivatives in the equations are transformed to curvilinear coordinates using the chain rule when solving the
non-advection phase.
@H
@x
¼ nx

@H
@n
þ gx

@H
@g
þ fx

@H
@f

@H
@y
¼ ny

@H
@n
þ gy

@H
@g
þ fy

@H
@f

@H
@z
¼ nz

@H
@n
þ gz

@H
@g
þ fz

@H
@f

ð99Þ
The spatial differentiations of the velocities are also computed using the differential chain rule as for Eq. (99) (H is replaced
by u, v or w). The metrics in the non-advection phase are evaluated by the second order central difference scheme in the
same manner as the one-dimensional and the two-dimensional cases.

In the present paper, we use the type-A scheme to solve the three-dimensional problems [8]. The type-A scheme can be
written as Eq. (100). These coefficients of the interpolation function and the metrics for coordinate transformation are shown
in the appendix. The directional splitting technique can be easily extended to three dimensions as denoted in Section 3.2.
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Fj;k;lðn;g; fÞ ¼ ½ðB1j;k;lnþ B2j;k;lgþ B3j;k;lfþ B4j;k;lÞnþ B5j;k;lgþ @nfj;k;l�n
þ ½ðB6j;k;lgþ B7j;k;lfþ B8j;k;lnþ B9j;k;lÞgþ B10j;k;lfþ @gfj;k;l�g
þ ½ðB11j;k;lfþ B12j;k;lnþ B13j;k;lgþ B14j;k;lÞfþ B15j;k;lnþ @ffj;k;l�f
þ B16j;k;lngfþ fj;k;l ð100Þ
In order to evaluate the three-dimensional solver, the present scheme is applied to the problem of three-dimensional solid-
body rotation [13]. The velocity vector ~v ¼ ðu;v ;wÞ is set as
~v ¼ ~x�~r ð101Þ
where~r ¼ ðx; y; zÞ and ~x ¼ 2p=
ffiffiffi
2
p
ð0;�1;1Þ. The time step is imposed to satisfy CFL 6 0:2 in all grid points. We use the mesh

with MX = MY = MZ = 100 defined by Eq. (102). The center of the solid body is located at (x, y, z) = (0, 20, 20).
(a) Schematic picture of the three-dimensional solid rotation problem. At the boundary and inside the rigid body, the value of f is set to 1.0, while
utside. (b) Initial shape. (c) The numerical result after one revolution.



5594 N. Fujimatsu, K. Suzuki / Journal of Computational Physics 229 (2010) 5573–5596
x0 ¼ ðj� 1Þ=ðMX � 1Þ � 1=2
y0 ¼ ðk� 1Þ=ðMY � 1Þ � 1=2
z0 ¼ ðl� 1Þ=ðMZ � 1Þ � 1=2
xj;k;l ¼ 100ðx0 þ 0:03sinð2apðy0 þ z0ÞÞÞ
yj;k;l ¼ 100ðy0 þ 0:03sinð2apðz0 þ x0ÞÞÞ
zj;k;l ¼ 100ðz0 þ 0:03sinð2apðx0 þ y0ÞÞÞ ð102Þ
Fig. 20(a) shows the schematic picture of this problem. Fig. 20(b) shows an isosurface of f = 0.5 for the initial shape and the
numerical result. Fig. 20(c) shows the contour plots of f with the l = const. plane at t = 1.0. The contour plots are drawn from
0.1 to 1.2 with increments of 0.1. The present scheme maintains the initial profile finely.

4. Conclusions

We investigated the problems of the CIP method on curvilinear coordinates and improved the method to solve the advec-
tion equation accurately. The proposed method takes different numerical procedures on the gradient value in contrast to the
original CIP method on curvilinear coordinates. In the advection phase, the gradient values on the curvilinear coordinates are
obtained from those values on the physical coordinates and those metrics. The metrics in the advection phase are computed
using stencils in the CIP method. The original CIP method and the present CIP method on curvilinear coordinates can main-
tain consistency only when these conditions are satisfied. In the non-advection phase, those equations based on the physical
coordinates are extended to curvilinear coordinates and are solved by arbitrary schemes. The present method needs two
types of metrics for coordinate transformation in the advection and non-advection phases. The present CIP method can easily
apply to the splitting technique and the direct multi-dimensional technique and solve the advection equation accurately.
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Appendix A

Here, we summarize the coefficients of the type-B scheme in the two dimensions and the type-A scheme in the three
dimensions over the curvilinear coordinates.

A.1. Type-B scheme in the two dimensions

3 2 3 2
Fj;kðn;gÞ ¼ A1j;kn þ A2j;kn þ @nfj;knþ A3j;kg þ A4j;kg þ @gfj;kg
þ A5j;kn

2gþ A6j;kngþ A7j;kng2 þ A8n3gþ A9ng3 þ fj;k ð103Þ

A1j;k ¼
�2ðfjþ1;k � fj;kÞ þ ðfn;jþ1;k þ fn;j;kÞDn

Dn3

A2j;k ¼
3ðfjþ1;k � fj;kÞ � 2ðfn;jþ1;k þ fn;j;kÞDn

Dn2

A3j;k ¼
�2ðfj;kþ1 � fj;kÞ þ ðfg;j;kþ1 þ fg;j;kÞDg

Dg3

A4j;k ¼
3ðfj;kþ1 � fj;kÞ � 2ðfg;j;kþ1 þ fg;j;kÞDg

Dg2

A5j;k ¼
�3ðfjþ1;kþ1 þ fjþ1;k � fj;kþ1 � fj;kÞ � 2ðfn;j;kþ1 � fn;j;kÞDn� ðfn;jþ1;kþ1 � fn;jþ1;kÞDn

Dn2g

A6j;k ¼
�ðfj;k � fjþ1;k þ fjþ1;kþ1 � fj;kþ1Þ þ ðfn;j;kþ1 � fn;j;kÞDnþ ðfg;jþ1;k � fg;j;kÞDg

DnDg

A7j;k ¼
�3ðfjþ1;kþ1 þ fjþ1;k � fj;kþ1 � fj;kÞ � 2ðfg;j;kþ1 � fg;j;kÞDg� ðfg;jþ1;kþ1 � fg;jþ1;kÞDg

Dng2

A8j;k ¼
�2ðfj;k � fjþ1;k þ fjþ1;kþ1 � fj;kþ1Þ � ðfn;j;k þ fn;jþ1;k � fn;jþ1;kþ1 � fn;jþ1;kÞDn

Dn3Dg

A9j;k ¼
�2ðfj;k � fjþ1;k þ fjþ1;kþ1 � fj;kþ1Þ � ðfg;j;k � fg;jþ1;k � fg;jþ1;kþ1 � fg;j;kþ1ÞDg

DnDg3

A10j;k ¼
�2ðfj;k � fjþ1;k þ fjþ1;kþ1 � fj;kþ1Þ � ðfg;j;k � fg;jþ1;k � fg;jþ1;kþ1 þ fg;j;kþ1ÞDg

DnDg3
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where n ¼ �Uj;kDt; g ¼ �Vj;kDt. Here, U ¼ nxuþ nyv ; V ¼ gxuþ gyv .
Metrics for coordinate transformation are computed from Eq. (69). Depending on the sign of U and V, we must change the

subscript of the coefficients A1j;k to A10j;k : jþ 1! j� 1 and Dn! �Dn for U P 0 and kþ 1! k� 1 and Dg! �Dg for
V P 0.
A.2. Type-A scheme in the three dimensions
Fj;k;lðn;g; fÞ ¼ ½ðB1j;k;lnþ B2j;k;lgþ B3j;k;lfþ B4j;k;lÞnþ B5j;k;lgþ @nfj;k;l�n
þ ½ðB6j;k;lgþ B7j;k;lfþ B8j;k;lnþ B9j;k;lÞgþ B10j;k;lfþ @gfj;k;l�g
þ ½ðB11j;k;lfþ B12j;k;lnþ B13j;k;lgþ B14j;k;lÞfþ B15j;k;lnþ @ffj;k;l�f
þ B16j;k;lngfþ fj;k;l ð104Þ
where n ¼ �Uj;k;lDt; g ¼ �Vj;k;lDt and f ¼ �Wj;k;lDt. Here, U ¼ nxuþ nyv þ nzw; V ¼ gxuþ gyv þ gzw and
W ¼ fxuþ fyv þ fzw.
B1j;k;l ¼ ½�2Dj þ @nðfj;k;l þ fjþ1;k;lÞDn�=Dn3

B2j;k;l ¼ �½B17j;k;l þ @nDjDn�=Dn2Dg

B3j;k;l ¼ �½B18j;k;l þ @nDkDn�=Dn2Df

B4j;k;l ¼ ½3Dj � @nðfjþ1;k;l þ 2f j;k;lÞDn�=Dn2

B5j;k;l ¼ ½B17j;k;l þ @nDkDnþ @gDjDg�=DnDg
B6j;k;l ¼ ½�2Dk þ @gðfj;k;l þ fj;kþ1;lÞDg�=Dg3

B7j;k;l ¼ �½B19j;k;l þ @gDkDg�=Dg2Df

B8j;k;l ¼ �½B17j;k;l þ @gDjDg�=DnDg2

B9j;k;l ¼ ½3Dk � @gðfj;kþ1;l þ 2f j;k;lÞDg�=Dg2

B10j;k;l ¼ ½B19j;k;l þ @gDkDgþ @fDjDf�=DgDf

B11j;k;l ¼ ½�2Dl þ @fðfj;k;l þ fj;k;lþ1ÞDf�=Df3

B12j;k;l ¼ �½B18j;k;l þ @fDjDf�=DnDf2

B13j;k;l ¼ �½B19j;k;l þ @fDjDf�=DgDf2

B14j;k;l ¼ ½3Dl � @fðfj;k;lþ1 þ 2f j;k;lÞDf�=Df2

B15j;k;l ¼ ½B18j;k;l þ @fDjDfþ @nDkDn�=DnDf

B16j;k;l ¼ ½B17j;k;l þ fj;k;lþ1 � fj;kþ1;lþ1 � fjþ1;k;lþ1 þ fjþ1;kþ1;lþ1�=DnDgDf
where Dj ¼ fjþ1;k;l � fj;k;l; Dk ¼ fj;kþ1;l � fj;k;l; Dl ¼ fj;k;lþ1 � fj;k;l and
B17j;k;l ¼ �fj;k;l þ fjþ1;k;l þ fj;kþ1;l � fjþ1;kþ1;l

B18j;k;l ¼ �fj;k;l þ fjþ1;k;l þ fj;k;lþ1 � fjþ1;k;lþ1

B19j;k;l ¼ �fj;k;l þ fj;kþ1;l þ fj;k;lþ1 � fj;kþ1;lþ1
Before computing the advection phase, the gradient values on the curvilinear coordinate are calculated by the coordinate
transformation.
~f n

~f g

~f f

0BB@
1CCA ¼

~xn ~yn ~zn

~xg ~yg ~zg

~xf ~yf ~zf

0B@
1CA fx

fy

fz

0B@
1CA
Metrics for coordinate transform in three dimensions are computed as
~xn ¼ ðxjþ1;k;l � xj;k;lÞ=Dn; ~xg ¼ ðxj;kþ1;l � xj;k;lÞ=Dg; ~xf ¼ ðxj;k;lþ1 � xj;k;lÞ=Df

~yn ¼ ðyjþ1;k;l � yj;k;lÞ=Dn; ~yg ¼ ðyj;kþ1;l � yj;k;lÞ=Dg; ~yf ¼ ðyj;k;lþ1 � yj;k;lÞ=Df

~zn ¼ ðzjþ1;k;l � zj;k;lÞ=Dn;~zg ¼ ðzj;kþ1;l � zj;k;lÞ=Dg;~zf ¼ ðzj;k;lþ1 � zj;k;lÞ=Df

eJ ¼ 1
~xnð~yg~zf � ~yf~zgÞ þ ~xgð~yf~zn � ~yn~zfÞ þ ~xfð~yn~zg � ~yg~znÞ
The gradient values advanced by the present CIP scheme are inversely transformed to the values in the physical domain
when the non-advection phase is solved.
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fx

fy

fz

0B@
1CA ¼ ~nx

~ny
~nz

~gx ~gy ~gz

~fx
~fy

~fz

0B@
1CA

~f n

~f g

~f f

0BB@
1CCA
Metrics for the inverse transformation in three dimensions are calculated as
~nx ¼ eJð~yg~zf � ~yf~zgÞ; ~ny ¼ eJð~zg~xf � ~zf~xgÞ; ~nz ¼ eJð~xg~yf � ~xf~ygÞ
~gx ¼ eJð~yf~zn � ~yn~zfÞ; ~gy ¼ eJð~zf~xn � ~zn~xfÞ; ~gz ¼ eJð~xf~yn � ~xn~yfÞ
~fx ¼ eJð~yn~zg � ~yg~znÞ;~fy ¼ eJð~zn~xg � ~zg~xnÞ;~fz ¼ eJð~xn~yg � ~xg~ynÞ
Depending on the sign of U, V and W, we must change the subscript of the coefficients B1j;k;l to B16j;k;l : jþ 1! j� 1 and
Dn! �Dn for U P 0; kþ 1! k� 1 and Dg! �Dg for V P 0 and lþ 1! l� 1 and Df! �Df for W P 0. Non-advection
and advection phase are solved in the same way as those for two-dimensional case.
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