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nates. The reason for the degeneracy in accuracies has not been discussed in detail. This
paper reveals the problems of the CIP method on curvilinear coordinates and presents an
improved CIP method to solve the advection equation accurately. The features of the pre-
sented method are: (1) the metric computation on the upwind stencil is defined in the
same manner as in the advection phase of the CIP method; and (2) gradient values in
the physical domain in the computation on the curvilinear coordinates are used. Various
test problems show that the improved CIP method has approximate third-order accuracy.

© 2010 Elsevier Inc. All rights reserved.

Keywords:

Curvilinear coordinate
Numerical algorithm
Semi-Lagrangian schemes

1. Introduction

The role of computational fluid dynamics (CFD) has been becoming more and more important in various engineering
fields. For example, in aerospace engineering, CFD techniques are indispensable to estimate aerodynamic characteristics
and investigate the flow field around vehicles. Numerical simulations are computed on curvilinear coordinates because
most aerospace vehicles have complicated geometries. The use of curvilinear coordinates is also necessary to capture
the boundary layer around a vehicle. There are numerous techniques to solve the flow equations. The CIP method is
one such method [1]. The characteristics of this method are to interpolate variables between the stencils using a cubic
function. In this method, the interpolation function is decided from the physical quantities and the gradient values of
the variables defined on the grid points. When we apply the CIP method to complicated mesh geometries, we take two
methods to denote the interpolation function on the mesh system. One is the extension to curvilinear coordinates by coor-
dinate transformation [2]. The other is to construct a mesh system adapted to the CIP method. A Soroban grid is a rea-
sonable mesh system for the CIP method [3]. However, the CIP method frequently encounters deterioration of accuracy
when the advection equations are solved on curvilinear coordinates. In spite of various applications, this problem has
not been resolved [2-5]. In the present paper, we propose a CIP method to solve the advection equations on curvilinear
coordinates with high accuracy. In Section 2, the problems of the CIP method on curvilinear coordinates are investigated
and an improved CIP method is proposed for computation on curvilinear coordinates. Section 3 discusses the extension of
a multi-dimensional method.
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2. One-dimensional CIP method
2.1. Physical coordinates

The advection equation in conservative form can be written as

of ou
10
Eq. (1) is rewritten by differential rules thus:
Here,
_ _gou
T X

The CIP method defines the spline function that follows the advection equation. The cubic polynomial function used in the
CIP method is decided to satisfy the advection equations and the spatial differentiation of that equation. When the differen-
tiation of Eq. (2) is taken, we can obtain the following equation:
ofc ,  Of _ of
§+ua_Hx7uxa (3)
In the CIP method, Eqgs. (2) and (3) are split into two phases: the advection phase and the non-advection phase.
Advection phase
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Non-advection phase
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The CIP method solves the advection equations so that the numerical profiles satisfy those equations and their gradient. The
profiles between grids are expressed by third-order polynomial as follows:
f(x) = ax® + bx® + feix + f;
fu®) = 3ax? + 2bjx + f, 8)
X = —UuAt

The coefficients of the interpolation function can be decided from the continuous condition of the physical quantities and the
gradient of those values between grid cells.

fx) =f;

f(xj + ij+jsign/2) :f}+jsign

fel¥)) = fug

SeXj + AXjjsign/2) = fujuisien

ij+jsign/2 :jSing . (XHjsign - Xj)

jsign=—-1(u > 0), jsign=1(u<0) 9)
The coefficients of the interpolation function are obtained from Eqgs. (8) and (9) as follows:

2(f; — fiisign) | fujision +fij

aj = jsign—— +=0s
AXS gy DX jsign/2
3(Firicion — [ . e 4+ 2f
bj _ (j}ﬂzmgn fj) +]Slgnf;(‘l+jmgn fx.j (10)
ij+jsjgn/2 \j+jsign/2

The profiles are moved along Eq. (8). This is called the CIP method. Egs. (4) and (5) are solved using the CIP method. Then an
arbitrary method such as the finite difference method or finite element method is applied to Eqs. (6) and (7). We call this
method based on Eq. (8) the original CIP method in the present paper [1].
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2.2. Extension of the CIP method to the curvilinear coordinates

In one-dimensional problems, the CIP method is applied to a non-equally spaced grid. When we rewrite Eq. (1) to curvi-
linear coordinates using ¢ = &(x), the advection equations on the curvilinear coordinates can be obtained as follows:

of o\ _

af+u§]; H' (11)

e

Here, U = u/x: and ¢&, = 1/x:. The CIP function on the curvilinear coordinates is defined as in the previous section. When we
take the differentiation of Eq. (11) with respect to ¢,

8t Bt U "¢

Eqgs. (11) and (12) are split into two phases on the advection and the non-advection phases.
Advection phase

(?f of

a + Uag 0 (13)

o | 9 _

5t % =0 (14)
Non-advection phase

of

g =H (15)

o of

e H. - U; o (16)

Egs. (13) and (14) are solved using the CIP method. Egs. (15) and (16) in the non-advection phase can be solved by some kind
of scheme. When we take the interpolation functions based on the CIP method in the previous section, we can obtain the
coefficients of those functions as follows:

F(&)=A8 +B& +f. ¢ +f
@

F:(¢) = 3A;& + 2Bi¢ + f:; (17)
&= -UAt
A :jsignzocj Siisign) +f dgsign T fej
AC}-stgn/Z Ac]+151gn/2
gy = 2o =6) | i viven + 2 (18)
Aﬁ j-+jisign/2 A€j+j5fg"/2

jsign=-1(U = 0), jsign=1(U<0)

In the present paper, the CIP method based on Eqs. (17) and (18) is called the CIP-CUV method [2,3]. To investigate the accu-
racy of the CIP-CUV method, we solve the scalar wave equation as a test problem [3]. For simplicity, the scalar velocity is
constant in the computational domain. The initial profile is
f(x,t =0) =2 +sin(2nx)
fi(x,t = 0) = 2mcos(27x) (19)
0(<x<1)

The numerical profiles after t = 4.0 are compared with the exact solution. The grid dependencies of the original CIP method
and the CIP-CUV method are then investigated. The numerical error is evaluated using the following equation:

\/ 5\/IX Num _fexact 2
" Z X(EfMXfexact ) (20)

where fyum and fexee are numerical and exact solutions, respectively, and MX corresponds to the number of grid points. The
metrics can be calculated using the second order central difference scheme

Xy — X1
xiJ - ZAé (21)
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The grid spacing changes at the center point discontinuously.

10 IL<Ki<IR
r(i) = 22
(0 { o otherwise (22)
where o = (0.5,1.0,1.2,1.5). Therefore, the mesh size is Ax; = Ax - r(i) in which
MX
Ax=1/"r() (23)

The number of grid points in the mesh is MX = (100, 200, 500, 1000, 2000) for each o. IL = MX/4, IR =IL+20NM — 1 and
NM = MX/100 are applied to each of these numbers of grid points. The numerical results obtained by Eqgs. (8) and (17) are
shown in Figs. 1 and 2. Although the original CIP method maintains third-order accuracy independent of o, the numerical
results obtained by the CIP-CUV method are less accurate than those of the original CIP method. Care must be taken in
the application of the CIP-CUV method to the non-equally spaced grid.

2.3. Problems of the curvilinear coordinates CIP method and the improvement of the CIP method

In the present section, we investigate the deterioration of the accuracy of the CIP-CUV method. Although the treatment of
the advection phase is quite different between Eqgs. (8) and (17), the profiles of f and F must always coincide at each time
step. It is of note to compare F = F(¢) at & = —UjAt = —(&;u)At and f = f(x) at x = —uAt. The profiles of F in the CIP-CUV
method can be written by

F(&) = A8 +Bi& + fojé +f; = A(-UAL’ + B(—UAL) + f1;(—~UAL) + ;
= A&y (—uAD’ + B (—uAD’ +f i (—UAL) +f = Ay X + Bich X+ fojly X+ (24)
where A;&}; and B;&); must correspond with a; and b;. Each coefficient can be rewritten as follows:
2(fi — fisien) +f:tj+jsign +fe
Aijijsign/z A5}’2+j’31'g!1/2
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feiluy # fui 27

The coefficients of Egs. (25) and (26) would not generally coincide with those of Eq. (10). The denominator in Eq. (10) is ex-
pressed using the grid spacing in an upwind cell. However, AX;jsign/2 # A&jjsign2 - X¢;j in general because metric x; of Egs. (25)

#b; (26)
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Fig. 1. Numerical results (Eq. (8)).
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Fig. 2. Numerical results (Eq. (17)).

and (26) is evaluated by the central difference scheme. As long as the metrics are estimated by the central difference scheme,
the coefficients of Eq. (18) do not agree with those of Eq. (10). In order to satisfy the equality condition, we should evaluate
the metrics calculated using the same stencils as in the original CIP method. Although f:&, = f; is satisfied analytically, Eq.
(27) is not consistent numerically. Therefore, the gradient of physical quantity f: in the computational plane should be com-
puted using the following expression f;; = f;/&y;. From the above discussion, the deterioration of accuracy of the CIP-CUV
method is caused by inappropriate evaluation of the metrics and the gradient value of the physical quantities. Here, we re-
write the coefficients of interpolation function of the CIP-CUV method.

2(fi = frisign) | fejuision +fej
AE a2
gj-¢-j3ign/2 gj+jsign/2

1

A8 = [jsign

3
X jujsign2
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5 3 5 2 -
(A&jjsign/2 * Xejuisign/2)”  (A&jujsigns2 * Xejajsign/2)
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A j+jsign/2 cjtsign/2
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_ | 3Uisin — i) - jsign fejsin +2fej | 1 _ b,
(A& jsign/2 - Xej) (Ajjsigns2 * Xej) | X

2
& j+jsign/2
f:,“.j+jsign = ij+jsign ' X:;Hjsign/z
fej=Fi - Xejigsigns2 (28)
X:; is the metric computed by the same stencils used in the original CIP method. In order to satisfy consistency with the ori-
ginal CIP method, the metrics must be evaluated as X:; = X;j.jsign = X¢jjsign/2 Detween the grid points of X; and X;,sig.. The gra-
dient value of the profile can be written as follows:
Fe(8) = 3A:& + 2B, + .
= 3A;(~UAL)? + 2B;(~UAt) + f
= 3A8,(~uAt)? + 2B j(~uAt) + f

1 o
~ 1 a2 f) =B (29)
Cxj Cxj

We can obtain the gradient value in the physical plane by coordinate transformation thus:

fi=Fe- &, (30)
The equation set of the reconstructed CIP method is summarized as follows:

F(&) =AE +B& +f &+
F:(&) =348 + 2B + f (31)



5578 N. Fujimatsu, K. Suzuki/Journal of Computational Physics 229 (2010) 5573-5596

_Nicion 205 — figsign) | fejeisin + fei
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AéjJrjsign/Z A§j+jsi,gn/2
3(fiion —F) . feii 4 2f s
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f &j+jsign :f;<J+jsign '5<5J+jsfgn/2

Fei = Fej - Rejuisiens2

&= —UAt = &, - uAt (32)
Xe = JSign - (Xjjsign — Xj) /AL (33)

The present method can obtain the same numerical results computed by the original CIP method because the numerical
scheme based on Egs. (31)-(33) exactly corresponds to the original CIP method.

2.4. General case of advection equation

The non-advection phase needs to be solved when the advection equation has a different velocity in space. In the original
CIP method, the advection and non-advection equations are solved separately. At first, Eqs. (13) and (14) are solved using the
original CIP method. The arbitrary numerical method can be applied to Egs. (15) and (16) in the non-advection phase. In the
present study, the non-advection equations are computed by the central difference scheme. The present method uses metric
x: redefined to maintain the third-order accuracy of the original CIP method. The present CIP method needs two types of
metric when the metric in the non-advection phase is estimated by the central difference scheme. Here, we consider the
treatment of the non-advection equations. The present CIP method can obtain the exact gradient value f, without solving
Eq. (5) because the present CIP method is equivalent to the original CIP method. Therefore, we can also solve Eq. (7) after
Eq. (14) is solved in the advection phase.

Egs. (7) and (16) are compared to investigate the appropriate non-advection equations. Table 1 shows the governing
equations used in each numerical scheme. In case 2, ﬂ» is transformed inversely before solving the non-advection equation
and f, is computed. Then, Eq. (7) is solved in the non-advection phase. Case 3 takes Eq. (16) for f; as the non-advection
equation.

When the advection velocity is different in space and time, the advection velocity must be carefully evaluated. Yabe
et al.[3] proposed that the advection velocity should be evaluated as ii; = (u; + Ujp)/2 of u; at X; and u;y, at Xy = X — WAL
to maintain the numerical accuracy. The advection velocity is also evaluated using their method in the present problem.

Here, wave propagation with different velocity in space is solved on curvilinear coordinates[3]. The computational do-
main has unit length. The profile of f(x) = exp(—(x — 0.2)?/0.05%) and f,(x) = —2(x — 0.2)/0.05° - exp[—(x — 0.2)?/0.05?] is
imposed as the initial condition. The velocity profile in the computational domain is u = 1/(1 + ax). The grid spacing is
decided using Eq. (34).

. { 1.0+ psin(2n(i —IL)/(IR—IL)) IL<i<IR

34
1.0 otherwise (34)

where 8 = (0.0,0.1,0.2,0.3,0.5). The grid spacing at each location is defined as Ax; = Ax - r(i). Ax is computed by Eq. (23). The
time step is fixed at At = 0.2 - Ax. The total number of grid points varies with MX = (100, 200, 500, 1000, 2000). IL = MX/4,
IR = IL + 60NM — 1 and NM = MX/100 are applied to each of these numbers of grid points. Boundary condition is derived ana-
lytically and imposed at the stencils. Numerical results after t = 0.4 are compared with the analytic solution. Numerical error
is calculated using Eq. (20). Metrics x; in the non-advection phase are evaluated by Eq. (21). Although the velocity gradient uy
can be computed analytically, we evaluate u, as &,u; in the present test. Note that the non-advection terms are solved by the
fourth order Runge-Kutta method to maintain the numerical accuracy of the CIP method.

Fig. 3 shows the numerical results obtained by case 1D-1. The accuracy of the CIP-CUV method is less than second order
accuracy even when the grid spacing is slightly changed (8 = 0.1). These results mean that the original CIP method should
not be applied to curvilinear coordinates. Fig. 4 shows the results of case 1D-2. Third-order accuracy can be maintained in all
cases when Eq. (3) is solved as the non-advection equation. Fig. 5 shows the results of case 1D-3. There is no difference be-
tween the results of case 1D-1 and 1D-3. Case 1D-3 can not maintain high order accuracy and Eq. (16) is not appropriate as
the non-advection equation. U: contains information greater than two stencils because U in Eq. (16) has the metric evaluated

Table 1

One-dimensional cases.
Case CIP method Advection egs. Value Metric Non-advection eqs. Value Metric
1D-1 CIP-CUV Egs. (13) and (14) f.f Eq. (21) Egs. (15) and (16) f.f: Eq. (21)
1D-2 Present 1 Egs. (13) and (14) A Eq. (33) Eqgs. (6) and (7) ol Eq. (21)

1D-3 Present 2 Egs. (13) and (14) ff,; Eq. (33) Egs. (15) and (16) fvfi Eq. (21)
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I

%.

Error

) /
107
I - -

B=0.0

B=0.1
—%— B=02
—V— B=03
—0— p=05

—

10°

Ax

Fig. 4. Present CIP method (case 1D-2).

10

Error

B=0.0

B=0.1
—%— B=02
—v— p=03
—0— p=05

10°

AX

Fig. 5. Present CIP method (case 1D-3).

5579

by the central difference scheme. The computation of u, in Eq. (7) is sufficient in only two stencils. Therefore, the use of Eq.
(16) does not fit the non-advection phase. From these results, the CIP method on curvilinear coordinates should solve the

equation sets on physical coordinates.
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The present method may require larger computational memory to use two different metrics for the advection and non-
advection phases and imposes computational time for the coordinate transformation of the gradient variables. Table 2 shows
the comparison of the computational time and the metrics used in the CIP-CUV method and present CIP method. These re-
sults are obtained at MX = 2000 in the test problem in Section 2.4. In case 1D-2(1), the increment of computational time cor-
responds to 3% although metrics X: and x; in each phase are memorized in the computer. Even when metrics x;: in the
advection phase are computed at each time step, the computational time of the present method is larger than that of the
CIP-CUV method only by 12%.

2.5. Investigation on the present method

One of the features in the CIP scheme is to advect the gradient value based on the governing equation. The present meth-
od uses f: in the advection phase and f in the non-advection phase when the gradient value is solved. Can the gradient values
on different coordinates be used to solve the advection and non-advection equations in each phase? Here, we investigate this
numerical procedure based on the gradient advection equations.

The advection and the non-advection equations of the gradient value f; can be written as

of: Bf
o =0 (35)
?3—]%* -U: f——<—f) (36)

Eq. (35) is solved using the present CIP method and f; is converted to f, after advection. This numerical procedure means that
Eq. (35) is transformed to physical coordinates.

L (08)-
%—ftx+é ( fx> = (38)
L% [ 0X( fﬂ — Residual (39)

Eq. (39) contains the residual term caused by the coordinate transformation. However, the residual term does not need to be
solved as discussed below. In the CIP method, the right-hand side (RHS) of Eq. (39) is treated as the non-advection term.
When f; in Eq. (36) is also converted to f; by coordinate transformation, we obtain Eq. (41).

10f 1 u;

X: 8t—?x[ jﬁ*(Xfrf)] “0)
Ofx d ¢

ot _E)_g( )fx—&(uxf) (41)

In the non-advection phase, the residual term in Eq. (39) is added to the RHS of Eq. (41).

ofs d
ot oz(

The rearranged form of Eq. (42) can be written as

EWfe — % (uyf) + Residual (42)

oh 0. 1 0 of of
O G~ )~ [ ()] = = )~ wy =By (43)

The residual term in Eq. (39) is canceled by the terms on the RHS of Eq. (36) and we obtain Eq. (3). This investigation means
that the gradient advection equations on curvilinear coordinates can be transformed to physical coordinates and vice versa.
Therefore, the non-advection equation on the physical coordinates can be solved after the computation of the advection
equation on the curvilinear coordinates.

Table 2

Comparison of the CIP-CUV and the present CIP method in the one-dimensional case.
Case CIP method CPU time (s) Time ratio to the CIP-CUV Metric in advection
1D-1 CIP-CUV 6.31 1.00 Memorized
1D-2(1) Present 1 6.52 1.03 Memorized

1D-2(2) Present 1 7.05 1.12 Not memorized
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3. Two-dimensional CIP method in curvilinear coordinates

In this section, we extend the present CIP method to a two-dimensional method. The advection equation in two dimen-
sions can be written as follows:

o o) o) _,

ot ox ay (44)
of f f ou 81/
ot +u a e _f _y (45)
When Eq. (45) is rewritten on the curvilinear coordinates,
f o | f
+ U= 3 é =H (46)
au ov ov
H*_f<é a*”*an y6g+'7y6'7)

where U = &u + &, V =nu+n,v.
The gradient advection equation can be derived in the same manner as in the one-dimensional case. We take the differ-
entiations of Eq. (46) for ¢ and #.

8f¢ u e ok of of
+ 35+V =H; - Ua—ch % (47)
8fn u 3fn _ of of
8t+ 6c+va_;17H’7_ nag—s—Vﬂan (48)
Eqs. (46)-(48) are split into the advection and the non-advection equations.
Advection phase
8f of  of
+U86+V8n 0 (49)
8f 8f 8f
ot P9tV =0 (50)
ofy ofy 8f7
8t+Uag+V8;1 0 (51)
Non-advection phase
of
=t (52)
o of L, of
L (v ) 5
oy _ of of
St =Hi- (U,, etV %> (54)

There are two kinds of multi-dimensional methods for the CIP method. One is the directional splitting method to separately
solve the advection equation for each direction. The other is to construct the interpolation function in the multi-dimension.
At first, we extend the present CIP method to a multi-dimensional solution based on a splitting technique.

3.1. Extension to multi-dimensional scheme by the splitting technique

When we apply the directional splitting method, the advection equations (Egs. (49)-(51)) are split into two equations
with respect to each direction. First, the numerical profiles of f, f: and f; are advanced to ¢ direction.

of _,of

ar U= 0 (55)
ofe ., 0f:

o TV =0 (56)
of, . of

8;’ +U a? =0 (57)

Second, the physical quantities of f, f; and f, are solved to # direction.
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of . of
Va0 (58)
o |, 0
otV =0 (59)
of, . ofy
Vo0 (60)

An M-type CIP scheme[6] is used as the splitting technique. This method takes the following procedures.

1. Egs. (61) and (62) are solved by the CIP method to advance the profile in ¢ direction. Eq. (63) is solved by the 1st order
upwind scheme. The numerical profiles are advanced using the following equations:

F(&) =AS8 +BE +f:i+f 61)
F:(¢) =3A& +2BE + f: (62)
£\ f71+]szgnk fw k
Fy(&)=f, - UAtW (63)
U=¢&u+ ﬁy”

jsign=-1(U > 0), jsign=1(U < 0)

2. Egs. (64) and (65) are solved by the CIP method to advance the profile in # direction. Eq. (66) is solved by the first-order
upwind scheme. The numerical scheme can be written in the same manner as for ¢ direction.

F(n) =Anp* +Bn* +fin +f 64)

F,(n) = 3An* + 2By + f, (65)
_ Sejkrision — Sk

Feln) = = VA ignan (66)

V=nu+n,v

ksign=-1(V = 0), ksign=1(V <0)

The M-type CIP scheme is based on the empirical fact that (1) an advection equation is needed to accurately solve for the
direction of the advection, and (2) a numerical scheme with high accuracy is not required to solve the advection equation for
the direction perpendicular to that of the advection.

In the CIP-CUV method, the coefficient of the CIP function and the contravariant velocity are computed from Egs. (17) and
(18). The numerical variables in the CIP-CUV method are f, f; and f,. Coordinate transformation is not needed to obtain the
gradient valiables on the curvilinear coordinates. The metrics in the CIP-CUV method are computed by the second order cen-
tral difference scheme and are unique in the advection and the non-advection phases. J is the jacobian.

My

Xy = (T)jk = (Xj+1.k - Xj—l.k)/ZAé

14
-2) = O )20
Iy

¢
Y = TX » = Vjks1 — Yix-1)/24n
1

Jik=r—7—"—7" (67)
! XY = X g

Ve, = (‘ _X> W Yjerke = Yj1k)/2A8
I,

The present CIP method uses Eqgs. (32) and (33) to compute the coefficients and the velocities. The coefficients of the inter-
polation function A and B contain the gradient variables. When the present CIP scheme is applied to the advection phase, the
gradient values f., f, are computed by coordinate transformation (Eq. (68)).

1)
ft] X'? y’l f;’
In the present CIP scheme, different metrics are used in the advection and the non-advection phases. The metrics in the
advection phase are evaluated using the stencils of the CIP interpolation and are computed by the following equations.
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o i Aé — iy
Xejk = JSI8N(Xj jsignk — Xjp) /A =
-] Jk
Xpjk = KSIgN(Xj k ksign — Xj) /AE = — (%)

yﬁ\ivk :jSign(yj+jsign,k - xjvk)/A’/] = <;ilvx>

1
- - 69
ij XejkYnik — YejkXnjk (69)

i g

ik = KSIENY; ey ksign — Xie) /AN (

One of the features in the present CIP scheme is to use the gradient value of the different coordinates in each phase. Before
computing the non-advection phase, the gradient values advanced by the present CIP scheme are inversely transformed to
the values in the physical domain using Eq. (70).

G- 3)G) m

&, &, 71x and 7, are computed from Eq. (69). Egs. (50), (51), (53) and (54) can be also rewritten on the physical coordinates
when f; and f, are computed by inverse transformation in the non-advection phase. Non-advection equations are solved by
the central difference scheme.

Fig. 6 shows the concept of coordinate transformation between the physical and computational planes. The physical plane
is projected onto the computatlonal plane with an orthogonal grld The stencils of 7y, Tiijsignks Ti+jsignk-rksign AN Tjkiksign IN AN
upwind cell correspond to those of F, e T i jsign ks I“Hs,gn kiksign and I"J k+ksign, F@spectively. P corresponds to the locations in the
upwind cell on the physical plane and P’ is that on the computational plane. The physical quantities at location P’ are ad-
vected by the CIP method.

E=0xy + px+7yy

nN=0oxy+px+7y

X = —UAt

y=—vAt (71)

The accuracy of the CIP method depends on the locations of ¢ and # in the upwind cell[3]. In order to denote the coor-
dinate, there are some kinds of smooth function, e.g. polynomial interpolation, rational function interpolation, or cubic spline
interpolation. We can apply these functions as the coordinate function to the present method. However, these functions usu-
ally consume much of computational time. In the present paper, we define the semi-nonlinear coordinate function as Eq.
(71) to compute those locations accurately and to save the computational cost. The coordinates on the computational plane
are defined using the four stencils on the physical coordinates. Location P’ can be decided using Eq. (71) from location P when
the form of the coordinate function is decided. The coefficients of «, # and y in Eq. (71) are decided from the physical coor-
dinates of an upwind. Locations ¢ and # in the upwind cell and the metrics at each node can be computed using Eq. (71). The

s s u
. Jk+ksign :
(1) Physical plane () Computational plane

r J+ jsignk+ksign rj,k+ic§igrz

Vi jsignk+ksign

P
vAt “ay =
]"j,k
U,
it isignk A

rj+ Jsignk rj,k

Fig. 6. Concept of the coordinate transform.
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computation of the coefficient in Eq. (71) requires the inverse of the matrix. When the coordinates with the index of
(j + jsign, k + ksign) are not used for coordinate transformation, the coordinate function is a linear function (¢ =0 and
o/ = 0). However, the maximum CFL number is restricted by 0.5 in general when the stencil at (j + jsign, k + ksign) is not
used. In the orthogonal grid, « =0, y =0, o =0 and g’ = 0, automatically. In the linear coordinate function, g, y, # and
' correspond to metrics & Ey, 71x and #),, respectively, in Eq. (70).

3.1.1. Non-advection equations for the present CIP scheme
In the present CIP method, the non-advection equations on the physical coordinates are projected and solved to the cur-
vilinear coordinates.

of

2 _H 72

5% (72)
Take the differentiation of Eq. (72) to derivate the non-advection equations on the gradient value for the physical
coordinates.

ofx ou,. ov
or = P geh oy 3)
ofy ou, ov
E*Hy—a—yfx +@fy (74)

The spatial derivatives in the equations are transformed to curvilinear coordinates using the chain rule when solving the
non-advection phase.

OH , OH OoH
& = Cx a_é + nx (9—7]
OH ¢ OH OH
ay ~oe oy
uy, Uy, vyxand v, are also computed using the differential chain rule as for Eq. (75) (H is replaced by u or »). The metrics in the
non-advection phase are evaluated by the second order central difference scheme in the same manner as the one-dimen-
sional case.
Table 3 shows the governing equations used in the CIP-CUV method, the present CIP method and the present CIP method
with semi-nonlinear function. The non-advection equations in Table 2 are solved after the advection equations are computed
by the CIP-CUV method or the present CIP method.

(75)

3.2. Solid revolution problem over the wavy grid
The solid revolution problem is solved as the test problem in the multi-dimensional case to investigate the ability of the
present CIP method. A wavy grid is created using Eq. (76)[7].
Xo=(—1)/(MX ~ 1)
Yo=(k—1)/(MY - 1)
Xjx = 100 - (xo + 0.03sin(27oty,))
Yk = 100 - (¥ + 0.03sin(27oxo)) (76)

where o = (0,1,2,3). & = 0 corresponds to the orthogonal grid. The number of grid points of the mesh is changed with
MX = (50,100, 200,500,1000). In all computations, MX is equivalent to MY. Fig. 7 shows the computational grids with
o=(1,2,3).

The center of rotation is located at (x.,y.) = (50, 50). The initial profile is

1cos (my/ (%02 +-ye P /R) 2 2
X—X) +y— <R
f(x,y) _ 2 ( C) (y yc) (77)
0 otherwise
Table 3
Two-dimensional test cases.
Case CIP Advection eqs. Value Metric Non-advection egs. Value Metric Coordinate function
2D-1 CIP-CUV Egs. (49)-(51) fofe.fu Eq. (67) Egs. (52)-(54) f.fefu Eq. (67) Not used
2D-2 Present Eqgs. (49)-(51) fvfaf;n Eq. (69) Eqgs. (72)-(74) ffofy Eq. (67) Linear (o = 0)

2D-3 Present Egs. (49)-(51) fffq Eq. (71) Eqgs. (72)-(74) Ffoky Eq. (67) Semi-nonlinear
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(a)a=1. b)a=2. (c)a =3.

Fig. 7. Computational grid at o = (1,2, 3) with MX = MY = 50.

where (x.,y.) = (26,51). The initial values of f, f; and f, are obtained from Eq. (77) and fixed with zero values at the boundary
of the computational domain. The time step is At = 1.0. Revolution speed is set so that one revolution is completed after
16MX steps. The CFL number at At = 1.0 corresponds to 0.28 in all computations. The spatial velocity profiles imposed by
Eq. (78) are:

{ u=-2n(y -yc)/(16MX)

v =-271(x — X;)/(16MX) (78)

Numerical error to the initial profile after one revolution is evaluated by Eq. (20). Figs. 8-10 show the comparison of the
numerical error obtained by the CIP-CUV method, the present CIP method and the present CIP method with semi-nonlinear
function, respectively. The CIP-CUV method has third-order accuracy with equal-spaced grid ( = 0). As « increases, numer-
ical accuracies of the CIP-CUV method reduce to the second order. The CIP-CUV method strongly depends on the mesh
shape. Numerical accuracies of case 2D-2 are 2.80, 2.81, 2.81 and 2.77 with o = 0,1, 2 and 3, respectively. Case 2D-2 is highly
accurate even when the advection equation is solved on the skewed grid shape with oo = 3 in spite of the use of the linear
coordinate function. As shown in Fig. 10, numerical accuracy of the case 2D-3 method does not depend on the grid spacing
when the coordinate function of the semi-nonlinear type is used. Numerical accuracy of case 2D-3 is 2.80, even for the worst
case with oo = 0. Numerical accuracies with o = 1,2 and 3 have accuracies of 2.82, 2.83 and 2.84, respectively, better than
that of o = 0. Numerical errors with « = 1,2 and 3 approach the result of o = 0 as the number of mesh grid points increases.
Consequently, those cases have slightly steep gradients. The use of splitting procedure usually deteriorates numerical accu-
racy. However, the present method maintains higher order accuracy although the first order upwind scheme is applied to the
normal direction to that of the advection.

Fig. 11 shows the comparison of the profile after one revolution with the initial shape at & = 3 of case 2D-3. The present
CIP method preserves the initial shape after one revolution. The present CIP method can solve the advection equations with
third-order accuracy over a complicated mesh even though this requires computational costs for the coordinate
transformation.
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Fig. 8. CIP-CUV method (case 2D-1 by splitting technique).
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Fig. 9. Present CIP method (case 2D-2 by splitting technique).
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Fig. 10. Present CIP method (case 2D-3 by splitting technique).

(a) Initial profile. (b) Profile after one revolution.

Fig. 11. Solid revolution problem obtained by the present CIP scheme with semi-nonlinear function (MX = MY =50, o = 3).

Table 4 shows the comparison of the computational time in the CIP-CUV method and present CIP method. These results
are obtained at MX = MY =50 in the solid revolution problem. Cases 2D-2 and 2D-3(1) in the present CIP require an incre-
ment of the computational cost of about 5%. In case 2D-3(2), the metrics in the advection phase are computed at every time
step. The computational time in that case takes 1.19 times greater than the CIP-CUV method.
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Table 4

Comparison of the CIP-CUV and present CIP method in the two-dimensional case.
Case CIP method CPU time (s) Time ratio to the CIP-CUV Metric in advection
2D-1 CIP-CUV 4.07 1.00 Memorized
2D-2 Present 423 1.04 Memorized
2D-3(1) Present 4.26 1.05 Memorized
2D-3(2) Present 4.83 1.19 Not memorized

3.3. Extension to multi-dimensional CIP method by direct technique

The present approach is also straightforward to the multi-dimensional CIP method by direct technique. There are some
versions of the multi-dimensional CIP method. In the present analysis, we use the B-type CIP method in two dimensions [8].
The B-type CIP method assumes that all the variables (f.f: f;) have the continuity at grid points (j, k),
(j +jsign, k), (j,k + ksign) and (j + jsign, k + ksign). Each coefficient of the interpolation function is shown in the appendix.
In the advection phase, metrics for coordinate transformation are computed from Eq. (69) and the gradient values f; and
[, are transformed by Eq. (68). The differential terms of non-advection phase in Eqs. (72)—(74) are evaluated by the central
difference scheme. To demonstrate the efficiency of the present method, some numerical tests in two dimensions are con-
ducted in this section.

At first, we apply the direct technique to solve the solid revolution problem in the previous section and validate the accu-
racy of the present CIP method by the direct technique. The computational conditions correspond to those in Section 3.2.
Figs. 12-14 show the comparison of the numerical error of the case 2D-1, 2D-2 and 2D-3 by the direct technique, respec-
tively. The CIP-CUV method is less than third order accuracy except « = 0. The CIP-CUV method has the dependency of
the mesh shape. Numerical accuracies of case 2D-2 are 3.00, 3.00, 3.00 and 2.99 with « =0,1,2 and 3, respectively. In
the case 2D-3, numerical accuracies with oo = 0,1,2 and 3 have accuracies of 3.00, 3.06, 3.07 and 3.00. As shown in Figs.
9 and 10, the numerical accuracies of the splitting technique in the present problem are 2.80, 2.81, 2.81 and 2.77 in the case
2D-2, and 2.80, 2.82, 2.83, and 2.84 in the case 2D-3. The results of the cases 2D-2 and 2D-3 by the direct technique are more
accurate than those by the splitting technique. The present method by the direct technique with the semi-nonlinear function
maintains the third-order accuracy in all the cases.

Second, we solve Zalesak’s solid revolution problem by the splitting and direct techniques. The details of the problem are
given in [9]. Fig. 15(a) shows the schematic picture of Zalesak’s problem over the wavy grid. The computational grid is cre-
ated by Eq. (76) with o = 3.0 and MX = MY = 100. The velocity field on the computational domain is specified as

u=-271(y—50), v=271(x->50). (79)

The time step is At = 1/6400. Revolution speed is set so that one revolution is completed after 6400 steps. The outer
boundary condition is imposed as a free-slip boundary. Figs. 12(c) and 15(b) show the initial profiles and the numerical pro-
files after one complete revolution. The present method maintains the shape of the initial profile and gives a stable, weakly
diffusive but non-monotone result. The present method can easily incorporate the digitizer function [10]. Fig. 15(d) shows
the numerical result obtained using the digitizer function. The numerical profile can be maintained sharply. Fig. 15(e) and (f)
show the numerical results obtained by the splitting technique. These result by the splitting technique have the asymmetric
profiles because of the skewed computational mesh. The profile by the splitting technique is still asymmetric even when the
digitizer function is applied.
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Fig. 12. CIP-CUV method (case 2D-1 by direct technique).
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Fig. 13. Present CIP method (case 2D-2 by direct technique).
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Fig. 14. Present CIP method (case 2D-3 by direct technique).
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Next, we apply the present scheme to frontogenesis problem [11] and demonstrate that the scheme provides good results
over the wavy grid even if the velocity is strongly fluctuating and more complex. The details of the problem are given by
Doswell [12] and the analytical solution is known. In the problem, a circular vortex is assumed and the velocity is given by

b= vk (80)
vy = Uri: (81)
vr(r) = sech?(r)tanh(r)/ vro. (82)

where r = \/x2 + y2 and vy is a constant which is determined so that maximum value of »r is equal to unity. The initial con-
dition of f is distributed in the y-direction and given by

f=—tanh(y/2). (83)
The wavy grid is created by Eq. (84).

X=8(G—-1)/(MX-1)-4

Yo=8k-1)/(MY-1)-4

Xj ) = Xo + 0.3sin(2moy,)

Yik = Yo + 0.3sin(2moxo) (84)
where o = 3. « = 0 corresponds to the orthogonal grid. In the computations, MX = MY = 60. The numerical tests are per-

formed with the CFL = 0.4. The numerical result of the present scheme by the direct technique, that by the splitting technique
and the analytical result are shown in Fig. 16. The coordinate function in the present scheme uses the semi-nonlinear
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(b)

(c)

(d)

(e) (f)

Fig. 15. (a) Schematic picture of Zalesak’s problem over the wavy grid. The value of finside a cut-out cylinder is 1.0, while outside f= 0.0. Contour plots and
three-dimensional views of the profile of f: (b) Initial profiles, (c) the numerical result after one revolution by the direct technique,(d) the numerical result
after one revolution by the direct technique with the digitizer function, (e) the numerical result after one revolution by the splitting technique and (f) the
numerical result after one revolution by the splitting technique with the digitizer function.

function. Although the computational grid has the wavy form, the numerical result by the directional technique is in good
agreement with the analytical solution. The numerical result by the splitting technique can not capture the details of the
vortex motion because the splitting technique deteriorates the numerical accuracy rather than that of the direct technique
in general. The numerical results of the three test problem show that the direct technique is more effective to accurately
capture the flowfield than the splitting technique.

The curvilinear coordinates are often employed to resolve flows near boundaries. In general, fine meshes are placed
around the boundaries. We construct mesh with large aspect ratio in order to investigate the capability of the present meth-
od on the different mesh size. The mesh system is defined as

Xrj =1+ psin(yn( —1)/(MX — 1))
Yek =1+ psin(yn(k —1)/(MY — 1))

j MX

Xoj = Zxr.n Zxr,n
n=1 n=1
k MY

Y0k Zyr,n/zyr.n
n=1 n=1

0; = 2mou(x0; + Cy)

Ok = 2mou(y0x + Cy)

Xk = Ly [XOJ' +Cy + 0035”’1(0;()}

Yix = Ly [yOx + Cy + 0.03sin(6;)] (85)
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Fig. 16. (a) analytic solution (o = 3), (b) the numerical result by the direct technique (« = 3) and (c) the numerical result by the splitting technique (o = 3).

where «, $and y are the parameters for wavy shape; C, and C, are the grid parameters; L, and L, are size of the computa-
tional domain. We again solve Zalesak’s problem and frontogenesis problem. L, = L, = 100, Cx = C, = 0.0 and MX = MY =100
are set in Zalesak’s problem. The velocity profile in Zalesak’s problem is specified by Eq. (79). Those of frontogenesis problem
are defined as Ly =L, = 8, C, = C;, = 0.5 and MX = MY =60. Egs. (80), (81) and (82) are assumed as the velocity field in the
frontogenesis problem. In each test, o« = 3.0, § =0.9 and y = 7.0. The aspect ratio of the computational grid corresponds
to about 20 in maximum. Fig. 17 shows the computational grid used in these test problems. We apply the case 2D-3 by direct
technique based on the type-B CIP method. The coordinate function is semi-nonlinear function.

Fig. 18 shows the contour plots and three-dimensional view of the numerical profile in Zalesak’s problem. The analytical
result and the numerical results of the present scheme are shown in Fig. 18(a) and (b), respectively. The numerical profile
in Fig. 18(b) losts the key hole of the solid body because the density of the mesh severely changes in the computational
domain. Fig. 18(c) shows the numerical result with the digitizer function. The numerical profile finely maintains the initial
shape over the mesh.

(b)

Fig. 17. Wavy grid: (a) Zalesak’s problem (MX = MY = 100). (b) frontogenesis problem (MX = MY =60).
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Fig. 18. Contour plots (above) and three-dimensional views (below): (a) initial profile. (b) The numerical result after one revolution. (c) The numerical

result after one revolution with the digitizer function.

Fig. 19 represents the numerical results of the frontogenesis problem. From comparison with the analytic solution in
Fig. 19(a), the numerical result (Fig. 19(b)) agrees well with the theoretical one. The scheme can stably capture the fine struc-

ture even wavy grid with the different mesh size.
3.4. Extension to three dimensions

Once the two-dimensional scheme is established, it is straightforward to extend our method to three dimensions. The
advection equation in three dimensions can be written as follows:

of  owf) , a(ef)  owf)

o ox oy Tz =0 (86)
of o o of ou dv ow

E*”&*”@*W&:‘f(aJr@*&) (87)

Fig. 19. (a) Analytic solution and (b) the numerical result.
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When Eq. (87) is rewritten on the curvilinear coordinates,
of  of  of ., of
V=—+W_.=H
% Use gt on W3

H=-f(¢ au+8+é +8+ +¢ +8+8W+C8W
= av nxan Xay gyag nyan yay Zaé nzan Za&:

(88)

where U = &u+ & v+ Ew, V=nu+ n,v +n,w and W = (u + v+ Lw.
The gradient advection equation can be derived in the same manner as in the one-dimensional case. We take the differ-
entiations of Eq. (88) for ¢, # and (.

ofe  ,0f  \, 0f: of: of of of

at+U8,+V8 +W6V_Hf Ua—+ *8;7+W§8{ (89)
iy y U O _ of of of

ot TUge Y ay TWar =t~ <U” oz gy W 8C> %)

8f+ugfé af+w‘3f::HC (U gfiwgg%wkgf) 1)

Egs. (89)-(91) are split into the advection and the non-advection equations. In the same manner as in the one-dimensional
and the two-dimensional cases, the advection equations are solved on the curvilinear coordinates and the non-advection

equations on the physical coordinates. First, the numerical profiles of f, f:, f, and f; are computed by the present CIP method.
Advection equations for the present CIP method

ofe 0, Of: of:
o Vot Vo tWar =0 (92)
Wy Oy _
GETUGET Vg wigt=0 (93)
Uy % W g (94)

ot o " on a

Non-advection equations for the present CIP method
In the present CIP method, the non-advection equations on the physical coordinates are projected and solved to the cur-
vilinear coordinates.

of

Jd_H

ot
Take the differentiations of Eq. (95) to derivate the non-advection equations on the gradient values for the physical
coordinates.

(95)

ofx ou. ov,. ow
Efo—afx‘Fafy‘*‘afz (96)
ofy ou, ov, ow
R A (97)
ofy ou, ov,. ow
E—"’z‘&fx-%gﬁr-ﬁ'&fz (98)

The spatial derivatives in the equations are transformed to curvilinear coordinates using the chain rule when solving the
non-advection phase.
oH oH oH oH
a: 5x67€v+77x671+5xafg
OH _ OH OH oH
oy =g Tt
OH , OH O0H _ O0H

E:CZ%+WZ%+527§ (99)

The spatial differentiations of the velocities are also computed using the differential chain rule as for Eq. (99) (H is replaced
by u, v or w). The metrics in the non-advection phase are evaluated by the second order central difference scheme in the
same manner as the one-dimensional and the two-dimensional cases.

In the present paper, we use the type-A scheme to solve the three-dimensional problems [8]. The type-A scheme can be
written as Eq. (100). These coefficients of the interpolation function and the metrics for coordinate transformation are shown
in the appendix. The directional splitting technique can be easily extended to three dimensions as denoted in Section 3.2.
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Fiie1(&,1,0) = [(B1jki€ + B2jyit] + B3jjeil + Bjya) & + B5j kit + Ocfjl
+ [(B6jui + B7j 41l + B8jri& + BOjun) + B10juul + Oyfiuciln
+ [(B11kil + B12jxi¢ + B13jm + B14;51)C + B15j41¢ + 9cfrill
+ B16;1:n¢ + fiki (100)
In order to evaluate the three-dimensional solver, the present scheme is applied to the problem of three-dimensional solid-
body rotation [13]. The velocity vector 7 = (u, v,w) is set as
V=xT (101)

where 7 = (x,y,z) and @ = 27/v/2(0, -1, 1). The time step is imposed to satisfy CFL < 0.2 in all grid points. We use the mesh
with MX = MY = MZ = 100 defined by Eq. (102). The center of the solid body is located at (x, y, z) = (0, 20, 20).
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Fig. 20. (a) Schematic picture of the three-dimensional solid rotation problem. At the boundary and inside the rigid body, the value of fis set to 1.0, while
f=0.0 outside. (b) Initial shape. (c) The numerical result after one revolution.



5594 N. Fujimatsu, K. Suzuki/Journal of Computational Physics 229 (2010) 5573-5596

Xo=(-1)/(MX-1)—-1/2

Yo=(k—1) /(MY -1)-1/2

Zo=(1-1)/MZ-1)-1/2

X k) = 100(xo + 0.03sin(2am(y, + 20)))

Yjks = 100(y, + 0.03sin(2a:7(2o + Xo)))

Zjx1 = 100(zp + 0.03sin(20m(Xo + ¥y))) (102)
Fig. 20(a) shows the schematic picture of this problem. Fig. 20(b) shows an isosurface of f= 0.5 for the initial shape and the

numerical result. Fig. 20(c) shows the contour plots of f with the [ = const. plane at t = 1.0. The contour plots are drawn from
0.1 to 1.2 with increments of 0.1. The present scheme maintains the initial profile finely.

4. Conclusions

We investigated the problems of the CIP method on curvilinear coordinates and improved the method to solve the advec-
tion equation accurately. The proposed method takes different numerical procedures on the gradient value in contrast to the
original CIP method on curvilinear coordinates. In the advection phase, the gradient values on the curvilinear coordinates are
obtained from those values on the physical coordinates and those metrics. The metrics in the advection phase are computed
using stencils in the CIP method. The original CIP method and the present CIP method on curvilinear coordinates can main-
tain consistency only when these conditions are satisfied. In the non-advection phase, those equations based on the physical
coordinates are extended to curvilinear coordinates and are solved by arbitrary schemes. The present method needs two
types of metrics for coordinate transformation in the advection and non-advection phases. The present CIP method can easily
apply to the splitting technique and the direct multi-dimensional technique and solve the advection equation accurately.
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Appendix A

Here, we summarize the coefficients of the type-B scheme in the two dimensions and the type-A scheme in the three
dimensions over the curvilinear coordinates.

A.1. Type-B scheme in the two dimensions

Fir(&,0) = A& + A2 & + 0:f & + A3 + Adjn® + Oyfiin

+ A58 + A6 én + AT;én? + A8E N + AIEn® + fix (103)
ALy — —2(fi1k — fjx) + Fejrn + fjp) AL
jk = Aé3
A2, — 3k —fin) = 20k +feju) AL
jk = 2
A&
A3 - —2(fiker = fiae) + Fpjsert +Fria) A
jk = An3
o 3(]3‘,k+1 *fj,k) - 2(f}1j.k+1 +fnj,k)A77
Adj = A
A5:, — _3(f}+1.l<+1 +fj+1‘k _fj,k+1 —f}lk) - 2(f§J.k+l _fg,j.k)A£ - (fi.jﬂ‘kﬂ _fLEJH.k)Aé
jk — Aézf’l
A6 — —(fik =ik + fioveer = fer) + Fejer = Feji) AE + Pk — Frin) Al
ik = AZA
A7'I _ _3(f}+1.k+1 +fj+1‘k _fj,kﬂ —f}lk) - 2(f;7,i.k+1 —ft1.j<k)A77 - (fn,)'+1<k+1 —fn,/'ﬂ,k)AV]
jk — Aéf/lz
A8, — —2(fix = firrk o —fiwrr) — Fejr +Fejorn = fejornen — fejrrn) A
'JK Aég'A]’I
A9:, — _z(fj,k _fj+1.k +fj+1,l<+1 _fj,k+l) - (fﬂ.j.k _fﬂj+1,k _fn,i+1,k+l _.fﬂ,i.kH)An
ljk = AfAl’P

A10;, — *z(f},k *fj+1.k +f}'+1.k+1 *fj.,k+1) - (fﬂ-j.k *fr[.jﬂ‘k *fmj+1,k+1 +f:1j‘k+1)A7'I
ik = AZAR?
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where ¢ = —UjAt, nn = -V, At. Here, U = &u + &0, V =nu+n,v.

Metrics for coordinate transformation are computed from Eq. (69). Depending on the sign of U and V, we must change the
subscript of the coefficients Al to A10jx: j+1—j—1and A{ — —A¢ for U > 0 and k+1— k-1 and Ay — —An for
V=0

A.2. Type-A scheme in the three dimensions

Fju1(€,1,8) = [(B1j € + B2jjeim + B3juil + Bdjn)& + BSjpitt + Ocfjuilé

+ [(B6j ki1 + B741C 4 B8j 1 + B9jr1)n + B10j 1L + 0yfixiln

+ [(B11jxs¢ 4 B12j4 & + B13; 41 + B14j41) + B15j30¢ + Ocfjrall

+ B16j41EnC + fika (104)

where &= —UjuAt, n= -V At and {=-WjAt. Here, U=&u+gov+&w, V=nu+nv+nw and
W =Lu+ v+ w.

Bk = [-2D; + 0:(fiks + fiv1 k1) A JAE

B2jy; = —[B17;y) + 0:D;AE) /A Ay

B3jki = —[B18j); + 0:DkAd] /A AL

B4jyi = [3Dj — 0:(fia1k1 + 2fj11) AE]/AE

B5; 1 = [B17;x) + 0:DkAE 4 0,D;An] /AEAR

B6jy; = [~2Dy + 0y (fixs + fixr 1) AN/ AP

B7;x1 = —[B19jx; + 8,,DkAn]/A112A§

B8 = —[B174; + 3,,DjA1’]]/AEAl’]2

B9y = 3Dk — Oy (fiks1a + 2fj10) An] /A

B10;x1 = [B19; 41 + 9yDiAn + 0. DALl / ARAL

B11jyy = [-2D; + 0: (fis + fias1) AL /AL

B12jk; = —[B18j4; + 9: DAL /AEAL

B13jy = —[B19jx; + 0:D; ALl / AAL?

B14jy; = [3D; — 0:(fiki1 + 2fj40) AL /AL

B15j; = [B18; ) + 0: DAL + 0:DyA&]/AEAL

B16jxs = [B17;41 + fikir1 = fiwrron = fjonersr +finrn1]/AEARAL
where D;j = fi 101 = fikt, Dk = fis1a = fjxts Di = fjerr — fjeg and

B17jk1 = —fixi + fimrkt + fikert — fiv ke
B18jk; = —fist + fir1 ki + fikier — firi ki
B19jk; = —fist + fikr1a + fikier — Sk

Before computing the advection phase, the gradient values on the curvilinear coordinate are calculated by the coordinate
transformation.

fe X Yo ze\ [f
o] = Xy Yo oZy fy
f X Yo z) \f

Metrics for coordinate transform in three dimensions are computed as

Xe = (Xjp1 et — Xjng)/AE Xy = Xrans — Xixa) /AN, X = Xy — Xjr) /AL

Ve = Wjirnt = Yiu) /AE Yy = Gjsernd = Vi) /AN Ve = Yjgerrn — Viwa) /A

Ze = (Zir1 ki — Ziat) [ AE, Zy = (Zgwrd — Zaed) /AN, 20 = (Zj o1 — Zjaa) /AL

~ 1

12502 32) 00z 52) 502 5
The gradient values advanced by the present CIP scheme are inversely transformed to the values in the physical domain
when the non-advection phase is solved.
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ﬁ( Ex Ey EZ f ¢
AR
fZ é’x é,y (Z f;

Metrics for the inverse transformation in three dimensions are calculated as

&=z = Vizy), & =j(2,,5(; —Z:Xy), & :j(i(ﬂyl —XYn)
Mo = (e2: — Yezz), ity = J (2:Re — 2:%), 1 = J (XY — X:Fe)
=] 02y = 9a2), by =] 2Ry — 2%). o = J (R — %)
Depending on the sign of U, V and W, we must change the subscript of the coefficients B1j; to B16;,;: j+1—j—1 and
Aé— —AéforU>=0, k+1—-k—1and Ay > —-AnpforV>=0and I+1—1-1 and Al — —A{ for W > 0. Non-advection

and advection phase are solved in the same way as those for two-dimensional case.

St
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